
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Una nueva metodoloǵıa para
co-diseño de sistemas embebidos

centrados en procesador
usando FPGAs

Tesis presentada para obtener el t́ıtulo de Doctor
de la Universidad de Buenos Aires

en el área Ciencias de la Computación

Sol Pedre

Directora: Dra. Patricia Borensztejn

Director Asistente: Dr. Eĺıas Todorovich

Lugar de Trabajo: Departamento de Computación, Facultad de Ciencias
Exactas y Narurales, Universidad de Buenos Aires.

Buenos Aires, 2013

Una nueva metodoloǵıa para co-diseño de

sistemas embebidos centrados en procesador

usando FPGAs

Hoy en d́ıa, los sistemas embebidos son partes vitales de equipos de co-
municaciones, sistemas de transporte, plantas de enerǵıa, electrónica de con-
sumo, robótica entre muchos otros. Su amplio campo de aplicación y las
crecientes complejidades de sus diseños torna esencial la propuesta de nuevas
metodoloǵıas, lenguajes y herramientas. El objetivo de esta tesis doctoral es
contribuir al campo del co-diseño hardware/software de sistemas embebidos.

Primero, presentamos el co-diseño de un sistema embebido de control apli-
cando el flujo de diseño tradicional, que combina procesadores y circuitos in-
tegrados (ICs): el desarrollo de un nuevo mini-robot llamado ExaBot. Luego,
introducimos un flujo de diseño tradicional para Field Programmable Gate Ar-
rays (FPGA), y lo aplicamos a un problema de sensado remoto: procesar video
infrarrojo en tiempo real en un UAV (Unmanned Aerial Vehicle). Finalmente,
de la observación de las dificultades en experiencias anteriores, y analizando
las tendencias y tecnoloǵıas actuales, proponemos una nueva metodoloǵıa de
co-diseño para sistemas embebidos centrados en procesador usando FPGAs.
Este es un creciente y novedoso campo de los sistemas embebidos: durante
2011, tanto Xilinx como Altera (los dos fabricantes mas grandes de FPGAs)
lanzaron nuevas familias de chips que combinan potentes procesadores ARM
con lógica programable de bajo consumo.

El objetivo de la nueva metodoloǵıa de co-diseño es lograr soluciones embe-
bidas de tiempo real, utilizando aceleración por hardware, pero con un tiempo
de desarrollo similar al de proyectos de software. Para ello, combinamos
metodoloǵıas y herramientas bien establecidas del mundo del software, como
Diseño Orientado a Objetos, UML, y programación multi-hilos, con nuevas tec-
noloǵıas del mundo del hardware, como herramientas semi-automáticas para
śıntesis de alto nivel. La metodoloǵıa propuesta fue aplicada a un algoritmo
de localización de múltiples robots en un sistema de visión global. La solución
embebida final procesa 32 imágenes de 1600 × 1200 ṕıxeles por segundo, lo-
grando una aceleración de 16× con respecto a la solución de software más
optimizada, con un 43% de incremento en área pero un 92% de ahorro de
enerǵıa.

i

A new co-design methodology for

processor-centric embedded systems in

FPGA-based chips

Embedded systems are nowadays vital parts of communication equipment,
transportation systems, power plants, consumer electronics, robotics among
many others. Their vast field of application and the growing complexities
of their designs turn the proposal of new methodologies, languages and tools
essential. The goal of this thesis is to make such contributions in the field of
hardware/software co-design of embedded systems.

First, we present the co-design of a control embedded system applying the
traditional flow in which processors and off-the-shelf Integrated Circuits (ICs)
are combined: the development of a mini-robot called ExaBot. Secondly, we
introduce a traditional Field Programmable Gate Array design flow, and ap-
ply it to a remote sensing application that processes real-time video from an
infrared camera on an UAV (Unmanned Aerial Vehicle). Finally, from the
observation of difficulties in previous experiences and analyzing current tech-
nologies and trends, we propose a new co-design methodology for processor-
centric embedded systems in FPGA-based chips. This is a growing and novel
field of embedded systems: during 2011, both Xilinx and Altera (the two lead-
ing FPGA vendors) launched new chip families that combine powerful ARM
processor cores with low-power programmable logic.

The goal of the proposed co-design methodology is to achieve real-time
embedded solutions, using hardware acceleration, but with development time
similar to that of software projects. For this, well-established methodologies
and tools from the software domain, such as Object Oriented Design, Unified
Modeling Language or multithreaded programming, are combined with new
techniques from the hardware world, like semi-automatic high level synthesis
tools. The proposed methodology was successfully applied to a multiple robot
localization algorithm in a global vision system. The final embedded solution
processes 1600× 1200 pixel images at 32 frames per second, achieving a 16×
acceleration with respect to the most optimized software solution, with a 43%
increase in area but a 92% energy saving.

ii

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Research goal . 4

1.3 Outline of the thesis . 4

2 Embedded systems using processors and ICs: ExaBot, a new
mobile mini-robot 6

2.1 Introduction . 7

2.2 Co-Design Flow . 10

2.2.1 Goals Specification. Body, locomotion and sensors defi-
nition . 11

2.2.2 Partition in subsystems 12

2.2.3 Design Refinement & Testing of each subsystem 12

2.2.4 Subsystems integration & Testing 13

2.2.5 Final mounting . 14

2.3 Case Study: ExaBot development 14

2.3.1 Goal Definition . 14

2.3.2 Body, sensors and locomotion definition 14

2.3.3 Partition in Subsystems 20

2.3.4 Subsystem Refinement: Motor Control 23

2.3.5 Subsystem Refinement: Sensor Control 30

2.3.6 Subsystem Integration 36

2.3.7 Subsystem Integration: Communication 37

iii

2.3.8 Subsystem Integration: Programming 43

2.3.9 Subsystem Integration: Power 44

2.3.10 Subsystem Integration: Design and Test of the final PCB 45

2.3.11 Final Mounting . 47

2.4 Applications . 47

2.4.1 Research: Autonomous visual navigation 48

2.4.2 Outreach . 49

2.4.3 Undergraduate Education 50

2.5 Publications . 50

2.6 Conclusions . 52

3 Embedded Systems using FPGAs: Real-time hotspot detec-
tion 53

3.1 Introduction . 54

3.1.1 What is an FPGA? . 54

3.1.2 Why are FPGAs of interest? 55

3.1.3 What are FPGAs used for? 55

3.2 FPGA Basic Architecture . 57

3.2.1 Logic Blocks . 57

3.2.2 Routing Matrix & Global Signals 58

3.2.3 I/O Blocks . 59

3.2.4 Clock Resources . 60

3.2.5 Embedded Memory . 60

3.2.6 Multipliers, Adders, DPS blocks 61

3.2.7 Advanced features . 62

3.2.8 The complete picture 63

3.3 Design Flows for FPGA . 63

3.3.1 Architecture Phase . 64

3.3.2 Implementation Phase 65

3.3.3 FPGA flows comparison 76

iv

3.4 Case Study: Real time hot spot detection using FPGA 79

3.4.1 Requirements and Specification 80

3.4.2 Architecture . 82

3.4.3 Implementation . 89

3.4.4 Solution sizing . 95

3.4.5 Experiments and Results 96

3.5 Conclusions . 101

4 A new co-design methodology for processor-centric embedded
systems in FPGAs: Vision-based multiple robot localization 103

4.1 Related Work . 105

4.1.1 Vision-based multiple robot localization 105

4.1.2 Co-designed FPGA solutions for image processing algo-
rithms related to robotic localization 106

4.1.3 High level modeling and high level synthesis 108

4.2 Methodology . 110

4.2.1 OOP Design . 110

4.2.2 C++ Implementation and Testing 112

4.2.3 Software Migration, optimization and HW/SW partition 113

4.2.4 Hardware translation, testing and integration 116

4.3 Multiple Robot Localization 121

4.3.1 Method overview . 121

4.3.2 Image rectification . 122

4.3.3 Position estimation . 123

4.3.4 Orientation calculation 123

4.3.5 Robot identification . 124

4.4 Hardware/Software co-designed solution 124

4.4.1 OOP Design . 125

4.4.2 C++ Implementation and Testing 127

4.4.3 Software Migration, optimization and HW/SW partition 128

v

4.4.4 Hardware translation, testing and integration 131

4.5 Acceleration, area and power consumption results and analysis 137

4.5.1 Acceleration . 137

4.5.2 Area . 142

4.5.3 Power and Energy consumption 142

4.5.4 Overall analysis . 144

4.6 Conclusions . 146

5 Conclusions 147

5.1 Embedded systems using processors and ICs 148

5.2 Embedded systems using FPGAs 148

5.3 A new co-design methodology for processor-centric embedded
systems in FPGA-based chips 149

5.4 Publications . 151

5.5 Future work . 153

Appendices 154

Appendix A Exabot Schematics and PCB 155

vi

List of Figures

2.1 Robots for hostile environments. Space exploring rovers: a) The
soviet Lunokhod, b) NASA’s Spirit, Sojouner and Curiosity.
On Earth: c) Airduct inspection robot d) iRobot’s 510 PackBot
used at Fukushima Daiichi Nuclear Power Station in Japan e)
KonaBot Robot for bomb control constructed at our lab . . . 8

2.2 Service Robots: a) Roomba 790 vacuum cleaning b) KA Lawn-
Bott LB1200 Spyder Lawnmower c) Genibo pet robot 8

2.3 Research Robots: a) Adept’s Pioneer 3-DX robot b)K-Team
Khepera II mini robot . 9

2.4 Co-design flow for the ExaBot. The horizontal swimlines show
the equivalent stages from traditional general co-design flow. . 11

2.5 The Traxster mechanical kit 16

2.6 Pulse Width Modulation . 24

2.7 Motor subsystem diagram . 25

2.8 Proportional Integrative Derivative Control 26

2.9 Sequence diagram showing the interaction of the different mod-
ules to achieve the PID control 27

2.10 Prototyping boards: a) Breadboard, b) Stripboard, c) Perf-
board . 29

2.11 Prototype board for the Motor control with Faulhaber motor
connected. It includes a PIC18F2431, a L293 driver in the upper
left and a LM7805 in the bottom left. The other IC is a MAX232
for USART. 30

2.12 Infrared range finder timing diagram. 31

2.13 Infrared range finder analog output voltage vs distance to re-
flective object. 31

2.14 Sonar Timing Diagram . 32

vii

2.15 Sensor subsystem diagram . 33

2.16 Sequence diagram showing the interaction of the different mod-
ules to achieve Sonar control 35

2.17 Prototype board for the Sensor control with a GP2D120 range
finder connected. The cables for SPI communication can be
seen in the right, the ones for Vcc and Gnd in the left. 36

2.18 Typical configuration of SPI bus for one master and three slaves 37

2.19 Sequence diagram showing the interactions between the differ-
ent OSI layers to implement the network protocol dispatching
routine. 41

2.20 State Diagram showing a typical interaction of Phisycal, Link
and Application layers to send and receive a packet 42

2.21 Prototype boards for communication subsystem. In this config-
uration, the prototype board of the Motor Control is connected
to the PC104 through the perfboard with the CD4050B IC. . . 43

2.22 Four different configurations of the ExaBot: a) with all the sen-
sors and PC104 b) with a smart phone, c) with a netbook and
a 3D Minoru Camera, d) with an embedded Mini-ITX board
and a FireWire Camera . 47

2.23 Easy Robot Behavior-Based Programming Interface: a) Main
view. The upper panel shows the main control functions: left:
new, open, save. center: play, new timer, new counter.right:
close, b) A screen shot of the Braitenberg view. The left panel
shows the robot schema and the transfer functions that can
be used (top-down: inhibitory, excitatory, broken, constant).
In the center of the work canvas all the sensors are shown
(top-down: 2 line-followings, 6 infrared telemeters, 1 sonar, 2
bumpers). The wheels are shown on each side of the work can-
vas. The programmed behavior is a simple explorer that moves
around at constant speed and can avoid obstacles 49

3.1 FPGA market by end application 56

3.2 Simplified Xilinx Logic Cell (figure taken from [1]) 58

3.3 Simplified Xilinx CLB, comprising 4 Slices of 2 Logic Cells each.
(figure taken from [1]) . 58

3.4 FPGA routing signal (figure taken from [2]) 59

3.5 I/O block . 59

viii

3.6 A simple clock tree (figure taken from [1]). 60

3.7 Clock Manager (figure taken from [1]). 61

3.8 Embedded memory block. 61

3.9 Digital Signal Processing blocks 62

3.10 Generic FPGA architecture (figure taken from [2]) 63

3.11 Activity diagram of the Implementation phase of FPGA design
flow . 66

3.12 VHDL and Verilog levels of abstraction 67

3.13 Block diagram of a synchronous system (figure taken from [3]) 69

3.14 Block Diagram of a Data Path - Controller Architecture (figure
taken from [3]) . 72

3.15 Block diagram of full testbench- DUT stands for Design Under
Test (figure taken from [4]). 75

3.16 Design flow presented in Chu’s book [3] (see page 16 of the book) 77

3.17 Design flow presented in Maxfield’s book [1] (see page 159 of
the book) . 77

3.18 Design flow presented in Kilts’s book [5] (see page 9 of the book) 78

3.19 Design flow for the Implementation stage in Cofer’s book [2]
(see page 121 of the book) . 79

3.20 Design flow in Wolf’s book [6] (see page 414 of the book) . . . 80

3.21 Line of previous pixels stored in L. 82

3.22 Hardware platform including the video digitalizer, the FPGA
and Ethernet physical driver. 82

3.23 First view of the hierarchichal design 84

3.24 Camera control module architecture 85

3.25 Initial Architecture for the Image Segmentation module. The
clock is the 27 Mhz digitalizer clock. Both the clock and reset
signals are distributed to all the submodules, although this is
not shown in the figure for simplicity. 88

3.26 Final Architecture for the Image Segmentation module. 89

3.27 Architecture of the Net Control module. 90

3.28 Line L of previous pixels implemented as a stack. 91

ix

3.29 Detailed implementation of the stack L in the Raw Processing
module, including the general middle records and the special
top and bottom records of the stack. 92

3.30 HotSpot Reconstructor module. 93

3.31 Detail of the logic for the maximum calculation in the hotSpot
Reconstructor Module . 93

3.32 a hotspot image after classification in hot or cold pixels. b
visual representation of the results showing the location of the
detected hotspot (the centroid is not shown). 97

4.1 Lighting conditions on the SyRoTek Arena. 107

4.2 Methodology overview . 111

4.3 Activity Diagram for the software migration, optimization and
HW/SW partition stage . 114

4.4 Activity Diagram for the hardware translation, testing and in-
tegration stage, including the choices to use the AutoESL tool
or the hand-coded two-process 117

4.5 SyRoTek arena and robot with dress arc. 121

4.6 Original and rectified arena image. 122

4.7 Rectified image part and convolution filter response 123

4.8 Orientation and identification process 124

4.9 Structural Design . 125

4.10 Sequence Diagram for the calculation of the new position of one
robot . 126

4.11 Activity Diagram showing the parallel nature of the new posi-
tion and orientation calculation for each robot (two robots in
this diagram). 127

4.12 Profiling results for software optimizations in the PPC. 131

4.13 Profiling results for hardware acceleration 134

4.14 Execution times of all solutions 138

4.15 Acceleration of each hardware accelerated solution compared
with software solutions . 139

4.16 Acceleration achieved with respect to Amdahl’s theoretical max-
imum . 140

x

4.17 Acceleration of each additional hardware ipcore, as compared
with the solution with only one hardware ipcore. 141

4.18 Percentage of extra slices occupied as compared with the only
software solution . 143

4.19 Estimated energy consumption per frame for each solution . . 144

4.20 Estimated energy saving . 145

xi

List of Tables

2.1 Classification of the most useful sensors for mobile robot appli-
cations (table taken from [7]) 17

2.2 Characteristics of the ExaBot sensors. NA: Not Applicable, NI:
Not Informed, Rs: Resistance 20

2.3 Network layer packet formats. This can be extended if new
sensors are added. sensor: 0x00 : three left range finders,
0x01: three middle range finders, 0x02, three right range find-
ers, 0x03:sonar, 0x04: line-following, 0x05: bumper 40

2.4 Typical and Maximum consumption rates of the main(i.e., most
consuming) ICs and sensors to estimate the 5V battery require-
ments. All measures in mA. PICs running at 40 Mhz. 45

3.1 Raw processing output signals according to the situation. . . . 86

3.2 Code sizing . 97

3.3 Area occupied by the complete solution 98

3.4 Advanced HDL Synthesis Report Macro Statistics for Raw Pro-
cessing module . 99

4.1 Profiling results for software optimizations. Times for complete
solution in milliseconds. 130

4.2 Profiling results for hardware accelerated solution. 133

4.3 Profiling results with one, two, four and six hardware accelerators134

4.4 ROCCC and Two-Process comparison for vector MACC . . . 136

4.5 AutoESL and Two-Process comparison for Matrix::macc . . . 136

4.6 Area occupied by each solution. Hardware implemented using
two-process. 142

xii

4.7 Power and Energy consumption. Hardware implemented using
two-process. 144

1

Chapter 1

Introduction

1.1 Motivation

An embedded system is a system designed to perform one or few dedicated
functions and that is embedded into a larger device [8, 9]. Common char-
acteristics include efficiency in terms of energy, cost and weight; reliability
since they are often components of critical systems; and the need to meet real-
time constraints. Nowadays, embedded systems are vital parts of communica-
tion equipment, transportation systems, power plants, consumer electronics,
robotics among many others [10].

Most embedded systems include off-the-shelve ICs (Integrated Circuits) for
specific functions together with one or many processor elements, i.e., micro-
controllers, microprocessors or DSPs (Digital Signal Processors). The design
of systems that have software running in processors interacting with hardware
modules is called hardware/software co-design. Already in 2004, over 90 % of
embedded systems included some kind of processor [11], and from the 9 billion
processors manufactured in 2005, 98% was used in embedded systems [12].
According to the 2012 Embedded Market Survey conducted by EEtimes and
Embedded magazines [13], 97% of the 1,700 consulted embedded engineers
were using at least one processor in their designs. This makes research in co-
design methodologies and tools a key field in the embedded system domain.

However, some systems require massive data processing with real-time con-
straints that cannot be met with this standard approach. Examples include
digital signal processing methods such as image, video or audio processing, and
their applications to robotics, remote sensing, consumer electronics among
many other fields. In these cases, solutions include the use of Field Pro-
grammable Gate Arrays (FPGAs) or the design and implementation of ASICs
(Application Specific Integrated Circuits). These approaches take advantage of
the inherent parallelism of many data processing algorithms and allow to cre-

2

ate massive parallel solutions. They also allow tailored hardware acceleration,
e.g., with particular memory access patterns or bit tailored multipliers/adders.
ASICs provide the best solution in terms of performance, unit cost and power
consumption. FPGAs are designed to be configured by a designer after manu-
facturing— hence “field-programmable”. The ability to update the function-
ality after shipping, partial re-configuration of a portion of the design, and the
lower non-recurring engineering costs and shorter time-to-market compared
to an ASIC design, offer advantages for many applications. According to the
2012 Embedded Market Survey, 35% of the surveyed engineers are currently
using FPGAs in their designs [13].

For many applications designing the entire system in FPGAs or hardware
is not the most practical solution. Even the most data intensive processing
methods frequently contain sequential sections that are easier implemented in
processors. These hardware/software co-designed solutions try to combine the
best of both software and hardware worlds, making use of the ease of program-
ming a processor while designing tailored hardware accelerator modules for the
most time-consuming sections of the application. This not only accelerates the
resulting system compared to the processor solution, but also allows savings in
energy. The inclusion of processor cores embedded in programmable logic has
made FPGAs an excellent platform for these approaches. During 2011, the
two major FPGA vendors (Xilinx and Altera) announced new chip families
that combine powerful ARM processor cores with low-power programmable
logic [14, 15]. While FPGA vendors have previously produced devices with
on-board processors, the new families are unique in that the ARM processor
system, rather than the programmable logic, is the center of the chip [16].
This strengthens the growing trend towards co-designed processor-centric so-
lutions in FPGA-based chips [17]. According to the 2012 Embedded Market
Survey, 37 % of the engineers that do not use FPGAs in their current designs
confirmed that this trend will change their minds [13].

The novelty of this approach together with its potential in the embed-
ded system world makes academic research in hardware/software co-design in
FPGA-based chips an important field. The main problem to tackle is time-
consuming development. The rising complexity of these applications make
it difficult for designers to model the functional intent of the system in lan-
guages that are used for implementation such as C or HDLs (Hardware De-
scription Languages). Moreover, the difficulty of programming FPGAs in HDL
is pointed out by engineers as an important reason for not using FPGAs [13].
This poses a strong need for methodologies, languages and tools that reduce
development time and complexity by raising the abstraction level of design
and implementation [18] [19]. Advances have been made in high-level mod-
eling using specific Unified Modeling Language (UML) profiles to simplify
design. Also, much work is being done in high-level synthesis tools, which
translate constructs in C/C++ to HDL to simplify hardware implementation.

3

However, there is still much research needed in co-design methodologies, lan-
guages and tools so that the recent combination of powerful processors with
programmable logic can raise to its full potential.

1.2 Research goal

The goal of this thesis is to make a contribution in the field of hardware/software
co-design of embedded systems. We expect that the developed work will help
reduce design and implementation effort in an important field of embedded sys-
tems design, at a time when the growing complexities of these designs make
the need for new methodologies, languages and tools vital.

The particular research goals in this thesis are:

1. the study of traditional co-design flows using processors and off-the-shelf
ICs, and their application to the co-design of an embedded system with
real-time, power consumption and size requirements.

2. the study of traditional design flows using FPGAs and their application
to the design of an embedded system that require massive data processing
with real-time constraints

3. the proposal of a new co-design methodology for a significant class of
embedded systems: processor-centric embedded systems with hardware
acceleration in FPGA-based chips. The new methodology will be focused
in reducing design and implementation effort, integrating methodologies,
languages and tools from both the software and hardware domain.

1.3 Outline of the thesis

In this thesis we present designs in each of the mentioned fields of embedded
systems and we propose a new co-design methodology for processor-centric
embedded systems with hardware acceleration in FPGA-based chips.

Chapter 2 is devoted to the co-design of a control embedded system apply-
ing the traditional flow in which processors and off-the-shelf ICs are combined:
the development of a mini-robot called ExaBot [20]. This system has stringent
real-time, power consumption and size requirements, providing a case study
for traditional co-design flows. The main goal for pursuing this task was to
obtain a low-cost robot that could be used not only for research, but also
for outreach activities and education. In this sense, neither the commercially
available research robots nor the commercially available educational robots
were considered a suitable solution. Six ExaBot robots are currently in use

4

in the Laboratorio de Robótica y Sistemas Embebidos of the FCEN-UBA.
They have been used for educational robotics activities for high school stu-
dents, research experiments in mobile robotics, and education in graduate and
undergraduate university courses.

In chapter 3 we introduce a traditional FPGA design flow and apply it to
a remote sensing application [21]. The application processes real-time video
from an infrared camera on an UAV (Unmanned Aerial Vehicle) in order to
find the location and spatial configuration of the hot spots present in each
frame. The proposed method successfully segments the image with a total
processing delay equal to the acquisition time of one pixel (that is, at video
rate). The processing delay is independent of the image size. This real-time
massive data processing was possible because the algorithm was designed for
parallel FPGA implementation, and it was fully implemented in programmable
logic and hardware ICs.

In chapter 4 we propose a new co-design methodology for processor-centric
embedded systems with hardware acceleration in FPGA-based chips [22, 23,
24]. The aim of the methodology is to achieve real-time embedded solu-
tions using hardware acceleration, but with development times similar to soft-
ware projects. To reduce the development time, well established methodolo-
gies, techniques and languages from the software domain are applied, such
as Object-Oriented Paradigm design, Unified Modeling Language and mul-
tithreaded programming. Moreover, to reduce hardware coding effort, semi-
automatic C-to-HDL translation tools and methods are used and compared.
As a case study, we use a robust algorithm for multiple robot localization in
global vision systems. This algorithm integrates an e-learning robotic labo-
ratory for distance education that allows students from all over the world to
perform experiments with real robots in an enclosed arena. The co-designed
implementation of this algorithm following the proposed methodology shows
the usefulness of the methodology for embedded real-time massive data pro-
cessing applications.

In chapter 5 conclusions and future work are outlined.

5

Chapter 2

Embedded systems using
processors and ICs

ExaBot, a new mobile mini-robot

Most embedded systems include off-the-shelve ICs (Integrated Circuits) for
specific functions together with one or many processor elements, i.e. micro-
controllers, microprocessors or DSPs (Digital Signal Processors). The design
of systems that have software running in processors interacting with hardware
modules is called hardware/software co-design. Already in 2004, over 90 % of
embedded systems included some kind of processor [11], and from the 9 billion
processors manufactured in 2005, 98% were used in embedded systems [12].
According to the 2012 Embedded Market Survey conducted by EEtimes and
Embedded magazines [13], 97% of the 1,700 consulted embedded engineers
were using at least one processor in their designs. This makes research in co-
design methodologies and tools a key field in the embedded system domain.

This chapter is devoted to the co-design of a control embedded system
applying the traditional flow in which processors and off-the-shelve ICs are
combined: the development of a mini-robot called ExaBot [20]. This system
has stringent real-time, power consumption and size requirements, providing a
challenging case study for traditional co-design flows. The main contributions
in this chapter are:

• The adaptation of traditional co-design flows in which processors and
off-the-shelve ICs are combined to the autonomous robotics field. The
particular co-design flow is explained and the development of the robot
following its different stages is shown.

• The design, construction and testing of the ExaBot robots. The main
goal for pursuing this task was to obtain a low-cost robot that could be
used not only for research, but also for outreach activities and educa-

6

tion. In this sense, neither the commercially available research robots
nor the commercially available educational robots were considered a suit-
able solution. Six ExaBot robots are currently in use in the Laboratorio
de Robótica y Sistemas Embebidos of the FCEN-UBA. They have been
used for educational robotics activities for high school students, research
experiments in mobile robotics, and education in graduate and under-
graduate university courses.

This chapter is organized as follows: section 2.1 offers a short introduction
to mobile robotics and the reasons for choosing this case study. Section 2.2
presents the co-design and testing methodology followed. The development
of each stage to construct the ExaBot is presented in section 2.3. Section 2.4
comments several successful research, education and outreach activities carried
out with the ExaBot. Finally, section 2.6 shares some conclusions.

2.1 Introduction

Robotics has achieved its greatest success to date in the world of industrial
manufacturing1. Robot arms, or manipulators, comprised a US$ 5,7 billion
market in 2010, totaling 1,035,000 units installed in factories around the world
[25]. Yet, for all of their successes, these commercial robots suffer from a
fundamental disadvantage: lack of mobility. A fixed manipulator has a limited
range of motion, that depends on where it is bolted down. In contrast, a mobile
robot would be able to travel throughout the manufacturing plant, flexibly
applying its talents wherever it is most effective [26].

Mobile robots can be found in many fields. One of the most important
applications is their use in hostile or inhospitable environments for human
beings. For example, using mobile robots is nowadays the only viable option
of exploring other planets. From the Soviet Lunokhod 12 that landed on the
Moon in November 17, 1970 to the recent Curiosity that landed on Mars, a long
line of mobile robots have been developed to handle the extreme conditions
of outer space. In dangerous and inhospitable environments on Earth, such
teleoperated systems have also gained popularity (see Fig. 2.1).

Other commercial robots operate not where humans cannot go but rather
share space with humans in human environments. In 2010, about 2.2 million
service robots for personal and domestic use were sold, for a value of US$ 538
million [27]. So far, service robots for personal and domestic use are mainly
in the areas of domestic robots, which include vacuum cleaning, lawn-mowing,

1Industrial robots are defined by ISO 8373 as “An automatically controlled, repro-
grammable, multipurpose manipulator programmable in three or more axes which may
be either fixed in place or mobile for use in industrial automation applications.”

2The first mobile robot which landed on any celestial body

7

(a) Lunokhod (b) NASA Rovers

(c) Air-duct Robot (d) M510 (e) KonaBot

Figure 2.1: Robots for hostile environments. Space exploring rovers: a) The soviet
Lunokhod, b) NASA’s Spirit, Sojouner and Curiosity. On Earth: c) Airduct in-
spection robot d) iRobot’s 510 PackBot used at Fukushima Daiichi Nuclear Power
Station in Japan e) KonaBot Robot for bomb control constructed at our lab

pool cleaning, toy robots and hobby systems. Educational robots are also a
growing field, being the Lego Mindstrom the most popular kits for educational
robotics activities [28]. For a good idea of the amount, price and availability
of service robots see [29].

(a) Roomba (b) LawnBott (c) Genibo

Figure 2.2: Service Robots: a) Roomba 790 vacuum cleaning b) KA LawnBott
LB1200 Spyder Lawnmower c) Genibo pet robot

Although mobile robots can be found in many fields as already discussed,
achieving a fully autonomous robot is still a major task in robotics. The fun-
damental question is: how can a mobile robot move unsupervised through real-
world environments to fulfill its tasks? Research into high-level questions of

8

cognition, localization, and navigation can be performed using research robot
platforms that are tuned to the laboratory environment. Various mobile robot
platforms are available for programming, ranging in terms of size and terrain
capability. The most popular research robots are those of Adept MobileR-
obots and K-Team SA (see Fig. 2.3). However, many times this commercial
robots do not quite fit the necessary characteristics for particular tasks, and
are difficult to adapt since they have proprietary software and hardware.

For example, Khepera [30] is a mini (around 5.5 cm) differential wheeled
mobile robot that is developed and marketed by K-Team Corporation. The
basic robot comes equipped with two drive motors and eight infrared sensors
that can be used for sensing distance to obstacles or light intensities. It is very
popular and widely used by over 500 universities for research and education.
However, Khepera robot serves only for indoor small environments and al-
though several extensions can be added, it is very limited when modifications
to its sensing or programming capabilities are needed.

Another example of a well-known commercial mobile robot for research is
the Pioneer 2-DX and its successor Pioneer 3-DX [31]. They are popular plat-
forms for education, exhibitions, prototyping and research projects. These
robots are quite bigger than the Khepera (more than 10 times) and have a
computer integrated into a single Pentium-based EBX board running Linux.
This processor unit is used for high-level communications and control func-
tions. For locomotion, the Pioneer robots have two wheels and a sonar ring as
range sensors. They can be used for both indoor and outdoor environments.
Lots of accessories such as new sensors and actuators can be purchased from
Adept MobileRobots manufacturer. Nevertheless, because of its size, Pioneer
robots need a large workspace to move around and its weight makes it unsuit-
able to be transported around easily and tedious to be operated by a single
human.

(a) Pioneer (b) Khepera

Figure 2.3: Research Robots: a) Adept’s Pioneer 3-DX robot b)K-Team Khepera
II mini robot

9

Besides the above disadvantages, the main drawback of these commercial
mobile robots is their cost. For instance, a basic Pioneer robot costs approx-
imately $5,000 dollars, and a basic Khepera robot costs $4,000. It is very
difficult for Latin American research labs and universities to afford these costs
and hence this severely limits the possibilities of buying or upgrading these
robots, and even more for multi-robot systems. The maintenance of commer-
cial robots can also be very hard for developing countries. If some component
of the robot breaks it is not easy to purchase the replacement, it could take a
lot of time due to shipping, and this in turn may delay planned experiments.
On the other hand, although available educational robots are much cheaper,
their capacities are far from enough for research activities.

Moreover, robotics is peculiar in that solutions to high-level challenges are
most meaningful only in the context of a solid understanding of the low-level
details of the system. Hence, and keeping in mind that there is no robotics
without robots, for a Robotics Lab the design and development of the robot
itself is a goal. Finally, in countries such as Argentina, the development of
technology and technological proficiency is also a goal by itself.

These issues are the main motivations for developing our own low-cost
mobile robot: the mobile robot ExaBot. Our main goal was to obtain a low cost
robot that could be used not only for research, but also for outreach activities
and education.

In order to build a mobile robot, the basic questions of locomotion and
sensing must be first addressed. For this, it is necessary to design the hardware
and software of an embedded system that can control the actuators and sensors
of the robot. In this sense, a robot is a special case of a co-designed embedded
system with real-time, space and power consumption restrictions.

2.2 Co-Design Flow

In this section, we present the design and testing methodology followed during
the development of the ExaBot. This is a traditional co-design flow applied
to the particular field of autonomous robots. Although this was the adhoc
methodology for this design, it can be argued that such a methodology can be
followed to obtain timely designs for other robots as well. In Fig. 2.4 the main
stages of this flow can be seen together with the general stages of traditional
co-design flows based in processors and ICs.

In the following subsections, some details of each stage is presented.

10

In
te

g
ra

ti
o

n
 &

 T
e

s
ti

n
g

D
e

s
ig

n
A

rc
h

it
e

c
tu

re
R

e
q

u
ir

e
m

e
n

ts
 &

 S
p

e
c

if
ic

a
ti

o
n

Robot's Goal

Specification

Body, locomotion and

sensors definition

Subsystem Partition

Design Refinement &

Testing of each

Subsystem

Subsystem Integration

& Testing

Final Mounting &

Testing

Robot Prototype done

[system ok]

[need design
changes for
correct function]

[design ok]

[need changes
in subsystem
partition for
correct design]

Figure 2.4: Co-design flow for the ExaBot. The horizontal swimlines show the
equivalent stages from traditional general co-design flow.

2.2.1 Goals Specification. Body, locomotion and sen-
sors definition

The first stage is to define what the robot should be able to do, that is specify
which are the goals of the robot and which applications are targeted. The
goals define the requirements for the robot.

These requirements have to be taken into account when defining the body,
locomotion system and sensors of the robot. Some questions to answer are the
following: How big does the robot need to be? How much weight should it be
able to carry? What type of locomotion is needed? What sensing capabilities?
What processing power? Other considerations include topics like how much
reconfiguration is needed and what is the required battery autonomy.

11

To resolve this issues correctly, extensive research in perception, locomo-
tion, processing units and mechanical issues is needed.

2.2.2 Partition in subsystems

In this stage, the whole system is divided in subsystems according to the ele-
ments to be controlled (e.g. actuator control, sensor control, etc). A prelimi-
nary evaluation of the required hardware and software is done. Some guiding
questions are: Will cpu-like processing elements like microcontrollers be used?
What other ICs will be possibly needed? Which communication buses can be
used? For this step, extensive research on robotic solutions to similar goals is
needed, together with reading data-sheets of possible sensors, actuators and
ICs.

2.2.3 Design Refinement & Testing of each subsystem

In this stage, each subsystem is refined and tested. Of course, while doing this
refinement, it may be necessary to modify the original subsystem partition.
The following things need to be taken into account for each subsystem:

• Hardware: what ICs are needed? will some processor be used? what
adhoc analog and digital circuits are needed? For each element to control
(sensor or actuator) take into account their needed voltage supply and
current consumption (maximum, minimum and typical). This defines
if a driver will be needed and will affect the battery and power stage
requirements.

• Software: what type of control is needed for each element? (e.g. open-
loop or closed loop, linear or not, frequency of control, etc). Detailed
information of these topics can be found in Chapter 1 of Chen’s book
“Analog and Digital Control System Design” [32]. Particular program-
ming techniques for the selected processor need to be studied.

• Prototyping : design of a prototype circuit and prototype software.

– Design prototype schematics. Test all important capabilities with
circuit subsets using perfoards, breadboars, home-made Printed
Circuit Boards (PCB). Use similar (or the same) ICs as will be
used in the final board. Tools and techniques : Circuit capture pro-
gram (e.g, OrCad or DipTrace), techniques to make ”‘home-made”’
PCBs, soldering, cable construction.

– Program Software for this prototype board. Tools and techniques :
Depend on the processor in use (e.g, MPLAB tool for MicroChip
microcontrollers).

12

– Electrical test using particular signals and code to test paths. Func-
tional Tests of the software and hardware modules. Tools and tech-
niques : Debuggers (e.g, MPLAB) for some software parts; tester,
oscilloscope for ”‘real-time”’ software and complete-hardware parts.

2.2.4 Subsystems integration & Testing

In this stage, the subsystems need to be integrated so that the functionality
of the complete system can be tested. This stage may require changes in the
design and implementation of particular subsystems, hence influencing the
previous stage. Some steps in this stage are:

• Communication Protocol Refinement: Define the network protocol, packet
formats, frequency, etc. If possible, communicate a couple of the proto-
type boards to test preliminary integration.

• Power Subsystem: Taking into account all ICs, sensors, actuators defined
for each subsystem and the battery autonomy requirements, calculate the
needed battery and power stages.

• Design, Print and Test the complete electrical circuit:

– Design the schematic integrating the schematics for prototype boards.
Extend to cover the full capabilities and the final ICs. Tools: Dip-
trace or similar.

– Route the final PCB. Include physical space restrictions and all
final footprints. Take into account all circuit design rules (e.g. path
width depending on current, path distance, buses routing, etc). For
details see chapter 12 of Horowitz’s book “The art of electronics”
[33].

– Automatic and peer review checks to prevent bugs in the circuit.

– Board production.

– Electrical Test using tester, oscilloscope and particular code for path
testing. Fix all the physical/electrical bugs possible, and if there is
an unfixable bug, iterate to produce a bug free board.

• Software

– Program the final code for each subsystem separately. In each
subsystem, program and test each capability separately and inte-
grate one by one. Debug and test this code (MPLAB, oscilloscope,
tester).

– Program the communication protocol. Program and test each layer
separately and integrate. Debug and Test.

– Integrate each subsystem one by one. Integration tests.

13

2.2.5 Final mounting

In this stage, all the sensors and actuators need to be mounted in the robot’s
body. This also means setting in the control board, battery, all the cables and
connect everything to get the final robot.

2.3 Case Study: ExaBot development

2.3.1 Goal Definition

The goal of the ExaBot is to have one single robotic platform that allows the
following:

1. Research: The research activities are focused in autonomous navigation,
mainly indoors.

2. Outreach: The outreach activities are based in programming simple be-
haviors in the robot (obstacle avoidance, line-following, maze-solving).

3. Undergraduate education: The existing undergraduate courses concern
mostly on vision-based navigation.

4. Low cost: The robot should be low cost compared to its commercial
counterparts. We aimed at a robot that is ten times cheaper than the
khepera or the Pioneer robots.

2.3.2 Body, sensors and locomotion definition

Since the robot has a wide application spectrum (research, outreach and edu-
cation) the main requirement is

Easy Reconfigurability: The robot should support many different sensors and
processing units, and can be easily reconfigured with a particular subset of

them for a given activity.

In the next subsections, the particular choices for locomotion, body and
sensors are explained. However, it is important to keep in mind that these are
very tightly coupled decisions: not any body can produce any locomotion or
carry any amount of sensors.

14

Locomotion

A mobile robot needs locomotion mechanisms that enable it to move un-
bounded throughout its environment. But there are a large variety of possible
ways to move, and so the selection of a robot’s approach to locomotion is an
important aspect of mobile robot design. In laboratories, there are research
robots that can walk, jump, run, slide, skate, swim, fly, and, of course, roll.
Most of these locomotion mechanisms have been inspired by their biological
counterparts. There is, however, one exception: the actively powered wheel is
a human invention.

Biological systems succeed in moving through a wide variety of harsh envi-
ronments. Therefore it can be desirable to copy their selection of locomotion
mechanisms. However, replicating nature in this regard is extremely difficult.
In general, legged locomotion requires higher degrees of freedom and therefore
greater mechanical and control complexity than wheeled locomotion. Wheels,
in addition to being simple, are extremely well suited to flat ground. However,
even when choosing wheels, there are still many options on type, number and
wheel arrangement that result in particular forms of locomotion. Details on
these schemes can be found in Chapter 2 of Siegwart’s book “Introduction to
Autonomous Mobile Robots” [7], together with a good overview of legged loco-
motion and the introductory concept to locomotion used in this section. More
detailed information can also be found in Chapters 7 to 11 of Braunl’s book
“Embedded Robotics - Mobile Robot Design and Applications with Embedded
Systems” [34].

Research in locomotion schemes is not one of the ExaBot´s goals. Keep-
ing in mind the KISS3 principle of engineering, the simplest solution that
can achieve the needed locomotion can be chosen. This robot will move in
controlled environments with mostly flat floors (all goals refer to indoor ap-
plications). In order to fulfill navigation tasks (Goal 1), it will need to move
forward, backwards, and turn in it´s place. However, there is no need for
moving sideways. The simpler solution is to use the widely known differential
drive with two wheels that cover the whole chassis (so in-place turning can be
achieved). Moreover, since in some situations a harsher environment can be
encountered, it is desirable to get caterpillars instead of wheels. This locomo-
tion mean can go over small obstacles and traverse softer floors, giving a small
advantage that can come in handy when working with high school students,
and also for controlled outdoors experiments.

In conclusion, the locomotion for the ExaBot will use two wheels or cater-
pillars with a two-motor control to achieve differential drive.

3Keep It Simple, Silly

15

Body

The body should be rugged enough to support being handled by middle and
high school students (Goal 2), small enough to be transported around eas-
ily for those activities but also big enough to support many sensors and dif-
ferent processing power (Reconfigurability Requirement), and on top of all
that, low cost (Goal 4). Moreover, from the locomotion point of view, a two
wheeled/caterpillar chassis is preferred. Since research in mechanical issues
is not a goal for this robot, the simplest solution that meets the goals and
requirements is preferred. Hence, a pre-built mechanical kit was selected: the
Traxster Kit [35]. This kit is light (900 gr) and medium sized (229 mm length
× 203 mm wide × 76 mm height), so it is transportable and can accommodate
multiple sensors and processing units. It has two caterpillars, each connected
to a direct current motors (7,2 V and 2 Amp) with built-in quadrature encoders
(see following section), accommodating the required locomotion scheme.

Figure 2.5: The Traxster mechanical kit

Sensors

One of the most important tasks of an autonomous system of any kind is to ac-
quire knowledge about its environment. This is done by taking measurements
using various sensors and then extracting meaningful information from those
measurements. Sensors can either be Proprioceptive or Exteroperceptive.

• Proprioceptive sensors measure values internal to the system (robot); e.g.
motor speed, wheel load, robot arm joint angles, battery voltage.

• Exteroceptive sensors acquire information from the robot’s environment;
e.g. distance measurements, light intensity, sound amplitude. Extero-
ceptive sensor measurements are interpreted by the robot in order to
extract meaningful environmental features.

Of course, the discussion about which sensors are exteroperceptive or pro-
pioceptive is sometimes fuzzy.

16

General Classification Sensor or Proprio/ A/P
(typical use) Sensor System Extero
Tactile sensors Contact Switches EC P
(detect physical contact or Optical barriers EC A
closeness; security switches) Non-contact proximity EC A
Wheel/motor sensors Brush encoders PC P
(wheel/motor speed and Potentiometers PC P
position) Synchros, resolvers PC A

Optical encoders PC A
Magnetic encoders PC A
Inductive encoders PC A
Capacitive encoders PC A

Heading sensors Compass EC P
(orientation in relation Gyroscopes PC P
to fixed reference frame) Inclinometers EC A/P
Ground-based beacons GPS EC A
(localization in a Optical or RF beacons EC A
fixed reference frame) Ultrasonic beacons EC A

Reflective beacons EC A
Active ranging Reflectivity sensors EC A
(reflectivity, Ultrasonic sensor EC A
time-of-flight, and Laser rangefinder EC A
geometric triangulation) Optical triang. (1D) EC A

Structured light (2D) EC A
Motion/speed sensors Doppler radar EC A
(speed relative to Doppler sound EC A
fixed or moving objects)
Vision-based sensors CCD/CMOS camera(s) EC P
(visual ranging, Visual ranging packages EC P
segmentation, Object tracking package EC P
object recognition)

Table 2.1: Classification of the most useful sensors for mobile robot applications
(table taken from [7])

Table 2.1 provides a classification of the most useful sensors for mobile
robot applications.

When choosing sensors, a criteria to compare performance is needed. The
main four performance characteristics to take into account are: range, res-
olution, linearity of the transfer function and frequency (how many sensor
readings per second). Moreover, other characteristics need to be noticed for
the next steps, mainly voltage of operation; maximum, minimum and typical
consumption; if the output signal is analog or digital. Note that there are

17

other important performance characteristics to take into account that cannot
be easily measured in a lab and depend on the environment the sensor will
work. Examples are sensitivity, cross-sensitivity, error or accuracy. The in-
troductory concepts to sensors in this section are taken from Chapter 4 of
Siegwart’s book [7] and Chapter 2 of Braunl’s book [34]. Much more informa-
tion about different sensors and all the definitions used in this section can be
found in these books.

Exteropercetive Sensors

Goal 1 establishes that the robot will be used for research in autonomous
navigation, mainly indoors. Moreover, the low-cost goal also has to be taken
into account. From table 2.1, sensors usually used for navigation are ground-
based sensors, range-finding sensors and vision-based sensors. The most com-
mon ground-based sensor is GPS, but it is not suitable for indoor navigation.
The other methods include costly beacons and only work in the particular
place these beacons have been set up (e.g. based on radio waves [36], multi-
camera systems [37] or similar technology). Hence, no ground-based sensors
were included.

From the range-finding sensors, lasers are the most precise and reliable,
however their cost exceeded by several times the intended final cost of the
robot. The infrared optical triangulation range finders are cheap, short-range
punctual sensors (less than a meter). Ultrasonic range finders are non-punctual,
long range (several meters) sensors, and more expensive. Hence, the ExaBot
was given a ring of 8 Sharp GP2D120 [38] IR range finders and a Devanatech
SRF05 sonar [39].

The final sensors used for navigation are vision-based sensors or cameras.
Vision-based robotics is a growing field. Cameras can be very cheap and give a
lot of information about the environment. There is considerable research into
image processing, trying to extract meaningful features from images to perform
many high-level operations (object recognition, localization, navigation among
others). Also, combining cameras with structured light allows to have sensors
that provide 3D data. Hence, a camera was also included. Since camera
technology evolves very fast, support for an USB camera was included but the
exact camera was not decided. This also covers the undergraduate education
goal (Goal 3).

Finally, Goal 2 establishes that the outreach activities are based in pro-
gramming simple behaviors in the robot (obstacle avoidance, line-following,
maze-solving). For these, two cheap extra sensors were included: line-following
and bumpers.

Proprioceptive Sensors

The proprioceptive sensors are not directly related to the goals of the robot
but more as a service for the control needed for those goals. The main pro-

18

prioceptive sensors were included to have a better control over the motors to
achieve an accurate differential drive.

Wheel quadrature encoders (built-in in the Traxster kit motor) were in-
cluded to measure the movement of the motor. An encoder is an electro-
mechanical device that converts the angular position of a shaft to an analog
or digital signal. Incremental encoders provide information about the motion
of the shaft, that is, how many counts of encoders have passed since the last
time the sensor was checked. Quadrature encoders provide also information
about the direction of the rotation.

Also, an Allegro ACS712 [40] current consumption sensor for the motors
and battery voltage sensors were included. Both are analog sensors, in which
the output voltage signal of the sensor is proportional to the current consump-
tion and the battery level accordingly.

Final considerations

With these sensor choices, the design of the ExaBot covers five of the
seven types of sensors mentioned in table 2.1, only missing heading sensors
and ground-based beacons. This means that the requirement for many sensors
that can be taken off at any time is covered. To improve this even further, a
new requirement arises:

Sensor Expansion Requirement: try to have exported expansion ports so that
new sensors can be added in the future.

This is to be kept in mind when choosing microcontrollers, DSPs or micro-
processors and mapping the pins to the different functions. Most of the time,
the pins of these embedded controllers can have many different functions, so
the mapping can be done having as a goal to maximize the pins that are left
free with interesting functions to export.

Table 2.2 summarizes the Exabot’s sensors together with their character-
istics.

Computational power

The different goals of the ExaBot pose very different computational power
needs. Many research activities such as vision-based algorithms are usually
computationally demanding, while most of outreach experiences can be done
with very simple programs. Hence, the main drive in deciding on the computa-
tional power of the ExaBot was again the easy Reconfigurability Requirement.
The processing power was divided in two levels: low level processing units for
sensor and motor control, and a high level processing unit for more complex
algorithms. This high level processing unit was thought so it could be easily
removed or replaced. This will be explained in detail in following sections.

19

Sensor range precision linear freq. A/D
GP2D120 4-30 cm A/D conversion no 26 hz A

SRF05 1cm-4mts 3-4 cm yes 20 hz D
linefol 1-12mm NI no NI D

bumpers 1-10mm NA no NA D
3D camera NA 640x480 pixels NA 30fps D
encoders NA 624 ppsr yes NA D
ACS712 -20-20A 100mV/A yes 80kHz A
battery dep. on Rs A/D conversion yes NA A

Table 2.2: Characteristics of the ExaBot sensors. NA: Not Applicable, NI: Not
Informed, Rs: Resistance

2.3.3 Partition in Subsystems

At this point, all the actuators, sensors and the mechanical body are estab-
lished. Hence, it is the moment to think on what hardware and software will
be necessary to control them all. First, a general idea of what subsystems are
needed is presented.

From the previous section, three different subsystems can be easily iden-
tified: sensor control, motor control and high-level control. In this division,
proprioceptive sensors (encoders, motor consumption and battery level) should
indeed be part of the motor control, since they are included as sensors to im-
plement better motor control algorithms. This three main control subsystems
create the requirement for at least two other subsystems: a power subsystem
and a communication protocol to interconnect them.

A good way to start refining each subsystem is to think of what processing
unit (if any) is appropriate for each subsystem. There are mainly three types
of CPU-based processing elements that are used in embedded systems: embed-
ded microprocessors, microcontrollers and DSPs (Digital Signal Processors).
Embedded microprocessors are usually used for general purpose programming
or high-level programming. They usually include hardware support for mul-
tiple function calls, interrupts and for Operating Systems; pins to connect to
external memory, and also several I/O for embedded applications. Microcon-
trollers are used mainly for control in embedded systems. They include a CPU,
smaller than that of a microprocessor, generally with no support for OS and
limited support for function calls and interrupts. They also include on-chip
program and data memory, and very good and varied amount of I/Os to con-
nect directly to the element to be controlled. DSPs are a special branch of
microprocessors tuned for Digital Signal processing, usually featuring special
SIMD (Single Instruction Multiple Data) instructions, multiple MACs (Mul-
tiply and Accumulate) and floating point units integrated in the datapath.

20

These are used for processing signals that require large amount of mathemat-
ical operations to be performed quickly and repeatedly over an incoming data
stream (for example in audio or video processing).

For motor and sensor control, the most logical and common choice are
microcontrollers, since the main function of these CPU-based elements is con-
trol. There are thousands of different microcontroller types in the world today,
made by numerous manufacturers. One of the most used is the Microchip PIC.
Microchip has several PIC families: each family has many devices all sharing
the same CPU core but with different combination of peripherals and memory
sizes. At the moment the microcontrollers for the ExaBot were chosen, the
PIC18F was the most advance family from Microchip. The devices from this
family are low-cost, self-contained, 8-bit, Harvard structure, pipelined, RISC,
single accumulator (the Working or W register), with fixed reset and interrupt
vectors. A very important feature of this family is that it is targeted to be
programmed in C, unlike its predecessors that were largely programmed in
assembler.

For the high level control, the main idea is to provide a processing unit to
control the whole robot in order for it to be autonomous, and with enough
processing power for some research related algorithms such as artificial intelli-
gence or robotics vision, among others. In this case, since this processing unit
will carry general purpose programming, the most suitable CPU-based element
is an embedded processor. This processor can also provide the connection for
the camera (that is otherwise difficult to control with a microcontroller) and
wi-fi connection. Having this in mind, an embedded ARM 9 PC104 of 200
Mhz TS-7250 [41] was included. This embedded PC has 2 USB ports, a serial
port, an Ethernet port and several General Purpose I/O. It runs Linux Kernel
2.26, so that drivers to use the USBs for a webcam or a Wi-Fi key can be
easily obtained. Moreover, a full cross-compiler chain is available so it can
be easily programmed. It consumes at maximum 400 mA, quite a reasonable
consumption for a processor with those characteristics.

However suitable this embedded processor was in 2008 when the ExaBot
was first designed, it was clear that this would change in time. Hence, the
ExaBot was designed so the PC104 can either be present or not, and can
be easily replaced. In this manner, the processing power of the ExaBot also
follows the Reconfigurability Requirement, and not only can change depending
on the application, but also as more powerful and smaller embedded processors
or processing units are launched into the market. As can be seen in section
2.4, this particular property has come in handy. This reconfigurability poses
requirements for the communication subsystem and in the integration phase,
since all hardware and communication protocols need to be ready to work
without the PC104 or with another type of high-level control.

The power and communication subsystems do not need special CPU-based

21

elements. The power subsystem will be mostly analog power circuitry to attain
the required regulated voltages. The communication subsystem will be imple-
mented in each of the communicating elements (that is, the microcontrollers
and the microprocessor). This poses the need to look into the communica-
tions at this moment, to see if a suitable communication protocol is available
in the selected PIC family and embedded processor. If not, the family decision
needs to be redefined. Most of the devices from the PIC18F family include at
least two communication modules: a Synchronous Serial Port module that can
implement Inter-Integrated Circuit (I2C) or Serial Peripheral Interface (SPI)
protocols, and an Universal Synchronous/Asynchronous Receiver/Transmitter
(USART) module. Since in normal operation, the communication needed is
between one master (the embedded microprocessor) and several slaves (the
microcontrollers), the most suitable protocol from these is the SPI. This bus
is exactly a one master-multi slave protocol, being the simplest of the three
available protocols that complies with the needed communication pattern. The
PC104, as many other embedded processors, include this communication pro-
tocol, but it is not as widespread as the USART protocol for other type of
high-level processing units. Hence, following the Reconfigurability require-
ment, the implementation of an USART interface needs to be also studied.
This will be further discussed in the communication subsystem refinement.

The inclusion of CPU-based programmable devices in the design posses
the need for an additional subsystem: the programming subsystem. That is,
all the electronics and connectors so that the microcontrollers can be easily
programmed even when already soldered in the final board. This is fundamen-
tal for the Reconfigurability requirement: if extra sensors or other high-level
controlling units are to be included, the programming in the microcontrollers
will probably need updating.

In the following subsections, each subsystem is designed and tested inde-
pendently, complying with the Subsystem Refinement stage. The hardware
and software needed to control the elements in each subsystem is devised. Of
course, these are tightly coupled decisions, so they will be discussed jointly.

Microcontroller Programming Guidelines

A key issue when programming the control of a robot is that all sensor data
and commands need to be real-time and synchronized, since the robot moves
in the real world. If commands or sensing are delayed, or happen at unknown
intervals, there is no way of knowing if the conditions have already changed
and hence the commands are no longer useful or even harmful. Microcon-
trollers have special features to accommodate this type of real-time synchro-
nized control: the combination of different hardware modules for different
peripherals, interrupts and timers. For a good introduction to microcontroller
programming guidelines, see chapters 3 and 6 of Wilmshurst’s book “Designing

22

Embedded Systems with PIC Microcontrollers” [42].

2.3.4 Subsystem Refinement: Motor Control

The goal of this subsystem is to control the two DC (Direct Current) motors in
the ExaBot. Since the control of each motor is independent and symmetrical,
the control of only one motor will be first discussed.

Hardware

A direct current motor has only two wires: Vcc and Gnd. Depending on the
way they are connected, the motor moves one way or the other. Moreover,
the speed of the motor depends on the Voltage supply and it´s torque on
the current. In the ExaBot, the motors need 7,2V for maximum speed and
consume 2 Amp for maximum torque. The basic control idea is to achieve
two things: run the motor in forward and backward directions and modify its
speed.

In order to run the motor forward or backwards without having to recon-
nect the cables to Vcc and GND alternatively, an H-bridge is generally used.
An H bridge is an electronic circuit that enables a voltage to be applied across
a load in either direction. However, the PIC cannot drive the motor directly:
a typical PIC pin can drive up to 15 mA at 5V, and the motors consume up
to 2A at 7,2V. Hence, some kind of driver is needed. In the ExaBot a L298
[43] driver was included. This driver implements an H-bridge and can work
with up to 46V and drive up to 4A.

In order to modify the motor’s speed avoiding analog power circuitry Pulse
Width Modulation (PWM) can be used. PWM utilizes the fact that mechan-
ical systems have a certain latency. Instead of generating an analog output
signal with a voltage proportional to the desired motor speed, it is sufficient
to generate digital pulses at the full system voltage level (in this case 7,2V).
These pulses are generated at a fixed frequency. By varying the pulse width
in software (see Fig. 2.6), the equivalent or effective analog motor signal is
changed, and therefore the motor speed is controlled. The motor system be-
haves like an integrator of the digital input impulses over a certain time span.
The quotient ton/tperiod is called the “pulse–width ratio” or “duty cycle”

To achieve this PWM control, the most simple way is to program it in some
kind of CPU-like programmable device. As already stated, the PIC18F micro-
controller family was chosen for both this subsystem and the sensor control
subsystem. In this case, the chosen microcontroller of the PIC18F family must
have a PWM module. Moreover, the proprioceptive sensors that this subsys-
tem must control are quadrature encoders, current sensors and battery level

23

Figure 2.6: Pulse Width Modulation

sensors. For quadrature encoders, at least two digital pins are needed for their
two outputs. However, as these are widely used sensors, several microcon-
trollers include Quadrature Encoder Interface (QEI) modules that interpret
by hardware the increment and direction of the wheel, so such a module is de-
sired. Finally, current and battery sensors are both analog signals, so an ADC
(analog Digital Converter) module and at least two analog pins are needed.

If one PIC is to be used to control both motors, each module needs to
be duplicated and the whole programming to control both motors have to fit
in a single PIC. For simplicity reasons, and since the velocity and direction
control of the motors is independent from each other, one PIC was used for
each motor. From the PIC18F family, the PIC18F2431 [44] complies with all
the required modules: it has been design specifically for motor control.

At this point, all the fundamental hardware for motor control has been de-
fined. However, an extra safety measure was also included in the motor control.
The output voltage of the ACS712 indicating motor current consumption is
also used to implement a fault circuit in order to override all PWM output and
hence stop the motors if error conditions happen. The problem arises when a
motor is jammed for some reason. In that case, the motor consumes all the
available current from the battery, and if not turned off, surely something will
be burnt. To prevent this from happening, the sensed current inputs a LM319
voltage comparator [45] that is set so a 3 Amp threshold is not surpassed. If
that threshold is passed, the Fault pin of the PIC is driven low, and the Fault
module overrides the PWM output by hardware, hence stopping the motor.
Figure 2.7 shows a diagram of the main ICs and connections on this subsystem.

A final remark needs to be done about the battery sensor: this sensor,
differently from all the others, is not an off-the-shelve item. A resistive divisor
was implemented to get the battery voltage to the 0-5V range so it could input
the PIC directly.

For more information on DC motors and their low-level control, see chapter

24

Figure 2.7: Motor subsystem diagram

3 of Braunl’s book [34]. For a good introduction to microcontrollers, their
difference to microprocessors and an overview of Microchip PIC families, see
chapter 1 of Wilmshurst’s book [42].

Software

Motor Control

The most simple control for the velocity and direction of the motor is to use
PWM. For the desired velocity, the appropriate duty is calculated by simple
rule of three cross-multiplication and then set to the PWM hardware module
in the PIC18F2431. The problem with this approach is the lack of feedback:
in this scheme, the actual motor speed cannot be obtained. This is important,
because supplying the same analog voltage (or equivalent, the same PWM
signal) to a motor does not guarantee that the motor will run at the same
speed under all circumstances. For example, with the same PWM signal, a
motor will run faster when free spinning than under load. In order to control
the motor speed, feedback from the motor shaft encoders is needed. Feedback
control is called “closed loop control”, as opposed to “open loop control” such
as PWM.

The most commonly used closed loop controller is the Proportional Inte-
grative Derivative controller (PID controller). A PID controller calculates an
“error” value as the difference between a measured process variable and a de-
sired set-point. The controller attempts to minimize the error by adjusting the
process control inputs. In the case of motor control, it tries to minimize the
difference of the actual motor speed from the desired motor speed by adjusting
the duty cycle (i.e., the PWM signal).

The PID controller algorithm involves three separate constant parameters,

25

and is accordingly sometimes called three-term control: the proportional, the
integral and derivative values, denoted P , I, and D. Heuristically, these values
can be interpreted in terms of time: P depends on the present error, I on
the accumulation of past errors, and D is a prediction of future errors. The
weighted sum of these three actions is used to adjust the process via a control
element; in the case of the control of a motor using PWM, the duty cycle (see
Fig. 2.8).

Figure 2.8: Proportional Integrative Derivative Control

In this control, the Proportional, Integrative and Derivative constants Kp,
Ki and Kd need to be adjusted empirically since they depend on the particular
motor to be controlled. For the ExaBot, these parameters were tuned using
the Ziegler-Nichols method.

For a good overview on PID control including guidelines on how to adjust
the PID constants, see chapter 4 of Braunl’s book [34]. For complete details
on the control theory and mathematics behind PID, see chapter 14 of Chen’s
book [32]. PID control and Ziegler-Nichols method is also explained in chapter
10 of Ogata’s book “Modern Control Engineering” [46].

The PIC hardware modules used in motor control are the PWM and the
QEI, together with interrupt logic. The QEI module is configured in Position
Mode and hence automatically increments- or decrements- a counter with each
hardware encoder pulse, depending of the direction of the motor. This counter
can be read and reset from software. The basic four things to configure in the
PWM module are: period, duty, direction and fault logic. The PWM in the
ExaBot is configured to have a frequency of 1,225 Khz (period of 0.81 ms),
to generate an interruption once per period and have the fault logic enabled.
The duty and direction are controlled by the PID and are set every period
according to the last speed and direction command received, and the readings
from the encoder counter of the QEI. In Fig. 2.9 a sequence diagram can be
found with the interactions between the different modules to achieve motor
control.

The interrupt for the PID control is the only interrupt set at high priority.

26

Main PIDInterrupt
Module

PWM moduleQEI module

opt calculate pid

[control_cycle_ready == true]

loop main

par
*[every 0.81 ms]:pid_isr()

pos_count= read_counter() :int

set_direction(dir)

set_dutty(dutty)

control_cycle_ready= set_control_cycle() :true

pid_calculate()

acceleration_profile()

dutty= calculate_new_dutty(pos_count,
velocity_comand)

dir= calculate_new_direction(pos_count,
dir_command)

control_cycle_ready= set_control_cycle() :false

Figure 2.9: Sequence diagram showing the interaction of the different modules to
achieve the PID control

This is done to try to ensure that the control will be done as timely as possible.

For extra details see the PIC18F2431 data sheet [44], chapter 17 for PWM
module and chapter 16 for QEI module.

Battery Sensor Control

The basic idea of the battery sensor is to warn the ExaBot user that the
battery is running low, and hence, the robot should be turned off and the
battery should be changed. The battery sensor is implemented with a resis-
tive divisor, tuned to take the raw voltage output of the battery (i.e., before
regulating) to a 0-5V range. Hence, the battery sensor control takes as input
an analog voltage between 0-5V, that represents the real output voltage of the
battery multiplied by a constant α given by the resistive divisor. The battery
control is implemented using the 10-bit analog/Digital Converter module of
the PIC. This module works with a timer: when the timer wraps around, it
launches an ADC conversion. The timer was configured for the maximum

27

possible period, since the battery is depleted slowly4.

Since both the resistive divisor and the ADC converter are linear, we can
easily calculate the real output voltage of the battery Vout from the 10-bit
digitalized value Vdig, knowing the maximum voltage of the battery Vmax and
the constant of the resistive divisor α using the three-cross multiplication rule:

Vmax × α −→ 210

Vout −→ Vdig

Hence, to calculate Vout, equation 2.1 can be used:

Vout =
Vdig × (Vmax × α)

210
(2.1)

The battery sensor subsystem checks if Vout is under a defined threshold,
and if that happens, it turns on a led informing the user that the battery is
too low to continue using. For details on the ADC module, see chapter 20 of
the PIC18F2431 data sheet [44].

Motor Consumption and Fault Control

Although all the hardware necessary for motor consumption control is in-
cluded in the board, this control is not implemented in the current software
version. The required software for this control is similar to the one for the
battery control, since it is an analog value. However, instead of turning a led
on, it would be an extra input in motor control. How to take this information
into account in motor control requires extra thought.

The Fault control does not require extra software: it is just a configuration
of the PWM module. If it is set to take into account Fault control, when the
Fault pin is driven low, all the PWM outputs are driven to zero by hardware,
hence stopping the motor.

Prototyping

Before integrating this subsystem into the complete system and making the
final PCB, its most important parts need to be prototyped. Prototyping is
a time consuming and expensive procedure, since it requires printing boards,
buying ICs and components, soldering, building cables, etc. However, it is a
vital step to prevent designs erros from entering into the final circuit version

4Since the timer that works with the ADC converter is Timer5 (a 16 bit timer) and the
PIC runs with a 10 Mhz clock; the maximum possible period is 216× 1

106 = 0.00655 seconds.
This period is far enough for battery control.

28

that can make the board useless. Hence, it is fundamental to prototype at least
the critical sub-circuits. In this subsystem, that means that motor control
must be prototyped, while the battery level and motor consumption circuits
can have more relaxed testing. Apart from the already mentioned ICs and
circuits, in designing the prototype (or final) schematic the needed electronics
for each IC to work needs to be taken into account. This information can be
found in the data sheet of the IC, generally there is an application section with
typical operating circuits.

There are different techniques for prototyping, depending on the extent of
the needed circuit. These include the use of breadboards, stripboards, perf-
boards, home-made PCBs and even industrially made PCBs. A breadboard
(also called protoboard) is a construction base that is solderless. Components
are plugged into the board, so when the prototype is done, it can be dis-
mounted and the board can be reused. Stripboards are characterized by a 0.1
inch (2.54 mm) rectangular grid of holes, with wide parallel strips of copper
cladding running in one direction all the way across one side of the board. A
Perfboard is also a thin, rigid sheet with holes pre-drilled at 0.1 inch intervals
across a grid. However, instead of strips of copper, this board has round or
square separate copper pads in each hole (see Fig. 2.10). For these prototype
boards, only Dual-In-Line (DIP) ICs can be used.

a b c

Figure 2.10: Prototyping boards: a) Breadboard, b) Stripboard, c) Perfboard

If the circuits are more complex, then home-made or industrial PCBs are
needed. For this type of prototyping circuits, the schematic needs to be cap-
tured and the PCB routed. There are several proprietary and open-source
Electronic Design Automation (EDA) tools for PCB design, varying in com-
plexity, capabilities, and also cost. In this project, CadSoft’s EAGLE[47] was
used for prototype boards and Novarm’s DipTrace [48] for the final board. This
is a mid-range Schematic Capture and PCB Layout software that although is
proprietary, has a free version for designs of up to 4 layers and 500 pins. To
manufacture a home-made PCB, a subtractive method is generally used that
removes copper from an entirely copper-coated board, leaving copper only in
the IC footprints or paths.

29

For the motor subsystem prototype, simple industrial PCBs were used.
These boards were adapted from prototype boards used for another robot
development in the lab (the KonaBot). They include a PIC18F2431 DIP
microcontroller and a L293 [49] H-bridge driver. The L293 driver is identical
to the L298 driver used in the final version of the motor subsystem but for
smaller motors (it can drive up to 1 Amp instead of 2 Amp). Hence, the
system was tested with a 2224R006SR Faulhaber motor [50], a small motor
that is combined with quadrature encoders. For the prototyping stage, this is
not a problem since the electrical circuit and the complete code can be tested,
only the PID constants need to be adjusted afterward for the real motor.
The prototype board also includes a small power stage using a LM7805 [51]
regulator to guarantee stable 5V for all the logic. Tests with the ExaBot motor
were also conducted, but at reduced speed and with no load to not surpass
the 1A limit.

The PIC programming was done using C language, Microchip’s C18 com-
piler for PIC18F family and Microchip’s MPLAB [52] programming and de-
bugging environment. For debugging, a Tektronix TDS 1002 oscilloscope was
also used when the real time works of the signal needed to be seen, for ex-
ample to monitor the relationship between the PWM signals and the motor
movement. In Fig. 2.11 a picture of the prototype board for the ExaBot’s
motor subsystem can be seen.

Figure 2.11: Prototype board for the Motor control with Faulhaber motor connected.
It includes a PIC18F2431, a L293 driver in the upper left and a LM7805 in the
bottom left. The other IC is a MAX232 for USART.

2.3.5 Subsystem Refinement: Sensor Control

This subsystem needs to control eight infrared range finders, one sonar, two
line-following and two bumpers.

30

Hardware

In this subsection, the needed hardware to control each type of sensor will be
described.

Infrared range finders The chosen infrared range finders are the Sharp
GP2D120. As can be seen in the data sheet, this sensor has three pins: Vcc,
Gnd and Vout. The timing diagram shows that measures are given every 38
± 9.6 ms after power is supplied in the Vcc pin (see Fig. 2.12) [38].

Figure 2.12: Infrared range finder timing diagram.

The output is an analog voltage between 0 and 3.1V that is a function of
the measured distance (see Fig. 2.13).

Figure 2.13: Infrared range finder analog output voltage vs distance to reflective
object.

In order to get the distance measurements, the analog output has to be
sensed in the middle of the output period (when the signal is stable), digital-
ized and then- using the inverse of the transfer function- translated to distance
in cm. The simplest way to achieve this algorithm is to program a microcon-
troller, a device of the PIC18F family. The requirements for this part are that

31

the microcontroller has one timer- to trigger the range finders and sense the
output at the appropriate time-, 8 digital pins to trigger each range finder,
8 analog pins to get the output voltage of each range finder and at least one
analog/Digital Converter (ADC) module to digitalize the analog output.

Moreover, since the typical consumption of the range finders is 45 mA and
the typical PIC pin can only drive 15 mA, the digital trigger pin cannot drive
the range finder directly. Hence, a driver is needed. A simple way to create
such a driver is to use a transistor working as a switch. The transistor enables
current to go from the battery (emitter) to the range finder (collector) when
the trigger pin (base) goes low.

Sonar The SRF05 sonar has four pins: Gnd, Vcc, Trigger Input and Echo
Output. First, a 10µs pulse to the trigger input needs to be provided to start
the measuring. When the sonar sends the ultrasonic burst, it raises the echo
output until it receives an echo from some object. The echo line is therefore a
pulse whose width is proportional to the distance to the object. By timing the
pulse it is possible to calculate the range in centimeters: if the width of the
pulse is measured in us, then dividing by 58 will give the distance in cm. If
nothing is detected then the SRF05 will lower its echo line anyway after about
30mS. The sonar can be triggered every 50 ms (i.e, 20 times per second).
Figure 2.14 shows the timing diagram for the sonar.

Figure 2.14: Sonar Timing Diagram

The requirements for the microcontroller in this case are two digital pins
(one for the trigger and another for the echo), a timer to produce the 10 µs
trigger and some way to measure the time the echo line is up. Several PICs
have a special Capture module to do exactly this, so one of such modules is
required. In this case, the trigger and the Vcc are different lines, so although
the Sonar can sink up to 30 mA, these don’t need to be driven by the PIC
pin: they are drawn directly from the battery through the Vcc line. Hence,
no extra driver is needed.

Line-following and Bumpers The two line following have three pins:

32

Vcc, Gnd and Out. The Out line has a digital one (5V) when it is seeing a
white line, and a digital zero (0V) otherwise. The bumpers have only two pins:
when it is pressed, it joins both pins. Hence, they way to make it work is to
connect one of the pins to Vcc (likewise, Gnd) and the other one to the PIC
pin with a pull-down (likewise, pull-up). In this manner, when the bumper is
not pressed the PIC line has a digital zero and when it is pressed, the line has
a digital one.

To get a reading from this sensors, one way is to connect the out pin to an
interrupt-on-change pin in the microcontroller. As it is clear from the name of
the pin, this hardware module in the microcontroller generates an interruption
when the input value changes. However, it is hard to get a microcontroller
with 4 such pins. Another possibility is to poll the value of the pins at a
regular interval. In this manner, the requirement for the microcontroller is to
have 4 digital inputs, 2 digital outputs for the trigger of the line-following (the
bumpers are simply a switch so they don´t need a trigger), and a timer to
trigger the polling.

The total requirements for the microcontroller (only to control the sensors)
are: 8 analog pins, 16 digital pins, 2 timers, an ADC module and a Capture
module. From the PIC18F family, the PIC18F4680 device features all this, so
it is a clear candidate. This is a 44 pin microcontroller, differently from the 28
pin PIC18F2431 used for motor control. Figure 2.15 shows a diagram of the
main ICs and connections on this subsystem.

Figure 2.15: Sensor subsystem diagram

Software

An important feature of sensor control is that each sensor can be turned on or
off by software. There are special high-level commands so that only the sensors
that are going to be used for the particular application are sensed. This follows

33

the Reconfigurability Requirement, enabling also important savings in energy-
and hence in battery time-, always a sensible issue for an autonomous robot.

Infrared range finder Control Following the timing diagram in Fig.
2.12, the output of the range finder is stable for sure between 38.3 + 9.6 + 5 =
52.9ms and (38.3−9.6+0)∗2 = 57.4 ms after it has been first triggered. Hence,
a timer needs to be set so that each range finder is put to A/D conversion 56 ms
after it has been triggered. Since the PIC18F4680 has only one ADC module,
a round-robin algorithm was implemented to capture the value of each range
finder at a time. The timer was set to 28 ms, so that two range finders are
on at all times and each range finder is ready for capture after two timer
interruptions. This yields a throughput of one new range finder value every 28
ms. When the range finder is ready for capture, the ADC module starts the
conversion, and interrupts the microcontroller when it finishes digitalizing the
value. At that time, the result is stored and the range finder is turned off. In
the current code version, the translation between the digitalized range finder
value and the distance in cm is implemented in the high-level processing unit,
following the transfer function of Fig. 2.13. It is important to note that, in
the case of infrared range finders, the ability to turn off unused sensors ensures
that the range finders that are in use are sensed more frequently.

For programming details see the PIC18F4680 data sheet [53], chapter 11 for
TMR0 module, chapter 19 for the ADC module and chapter 9 for Interrupts.

Sonar Control The sonar trigger is controlled by the TMR1 timer module.
This timer is first set to 100 µs to ensure the trigger line of the sonar is raised
for that time. Then it is set to 50 ms to ensure the CCP module has captured
a new echo value, and that the sonar is ready for a new trigger as specified by
the sonar data sheet.

The sonar capture is controlled by the Capture/Compare/PWM (CCP)
module. This module in its Capture mode works with an associated timer,
in this case TMR3. The module captures the TMR3 value and produces an
interrupt when a specified change in the capture pin occurs (for example,
falling or raising edge). In this case, the capture pin of the CCP is connected
to the echo line of the sonar. Figure 2.16 presents a sequence diagram with
the interactions between the different PIC modules to achieve sonar control.
For programming details see the PIC18F4680 data sheet [53], chapter 12 for
TMR1, chapter 14 for TMR3 module, chapter 15 for CCP module and chapter
9 for Interrupts.

Line Following and Bumper Control The Out lines of the two line-
following and the two bumpers are connected to digital pins in the PIC. The
software to control these sensors is simply polling: if they are on, once in every
main control cycle, each pin is polled to check the corresponding sensor value.

34

Sonar ControlInterrupt
Module

TMR1 CCP ModuleMain

alt

[int from TMR1]

[int from CCP]

alt

[trigger_start = true]

[else]

alt

[starting_capture]

[ending_capture]

alt

[sonar_new_result == true]

sonar_trigger()

trigger_start= :false

start_trigger()

set_timer(100us)

reset_TMR3()

stop_trigger()

set_timer(50ms)

trigger_start= :
true

sonar_capture()

ini_time= read() :TMR3_captured_val

capture_timer_on_falling_edge()

end_time= read() :TMR3_captured_val

capture_timer_on_raising_edge()

sonar_new_result= set() :true

sonar_result= calculate() :end_time - ini_time

sonar_new_result= :false

Figure 2.16: Sequence diagram showing the interaction of the different modules to
achieve Sonar control

Prototyping

To prototype the sensor subsystem, a simple industrial PCBs was adapted
from a prototype board used for a previous robot development in the lab (the

35

FenBot). This include a PIC18F248 DIP microcontroller, a similar controller
as the PIC18F4680 that includes all the necessary modules to test (CCP, ADC
and timers), but it is smaller (only 28 pins) and hence simpler to route. In
this board, the complete range finder acquisition was tested with one range
finder (so one transistor was included), and the round-robin ring algorithm
with 3 triggers. The sonar, line-following and bumper code was also tested,
as well as the SPI communication (as described in section 2.3.7). In this
case, the prototype board did not include a power subsystem, so the 5V were
regulated externally using a Kenwood PR18-12 regulated DC power supply.
As in the motor subsystem, the PIC programming was done using C language,
Microchip’s C18 compiler and MPLAB environment, and the oscilloscope was
used for debugging real time signals. In Fig. 2.17 the prototype board for the
ExaBot’s sensor subsystem can be seen.

Figure 2.17: Prototype board for the Sensor control with a GP2D120 range finder
connected. The cables for SPI communication can be seen in the right, the ones for
Vcc and Gnd in the left.

2.3.6 Subsystem Integration

In the following subsections, the integration of the previous subsystems and the
development and testing of the final embedded system is described following
the methodology of subsection 2.2.4. First the three service subsystems are
described: Communication in subsection 2.3.7, Programming in subsection
2.3.8 and Power in subsection 2.3.9. Finally, subsection 2.3.10 describes the
final design and test of the PCB.

36

2.3.7 Subsystem Integration: Communication

In this subsection, the communication in the two main processing configura-
tions is described, i.e., with or without the embedded PC104.

Hardware

The SPI bus has 4 wires: SS (Slave Select), MOSI (Master Out Slave In),
MISO (Master In Slave Out) and SCLK (Slave Clock). Fig. 2.18 shows the
typical connections between one master and three slaves. The master always
starts the communication, selecting the slave it wants to talk to by driving the
appropriate SS pin low and generating the communication clock in the SCLK
pin. The SPI bus is full-duplex: the SPI master gets one bit from the slave at
the same time it transmits one. Moreover, this is the only way a master can
get information from the slave, by transmitting some data.

Figure 2.18: Typical configuration of SPI bus for one master and three slaves

Configuration with the PC104

The configuration shown in Fig. 2.18 is exactly how the PC104 (master)
is connected to the three PICs (slaves). At first glance, nothing more than
the appropriate wires between the pins are needed from the hardware point of
view. However, there are some details. One problem is that the PC104 uses
3.3 V in the SPI pins, while the PIC uses 5V. This is not a big problem with
the communication from the PC104 to the PIC- since the logic 1 in almost all
PIC pins is from 2.5V up, and hence 3.3V is read as a logic 15. However, it can
be a serious problem in the communication from the PICs to the PC104, since
its pins are not prepared for higher than 3.3V voltages. Hence, a CD4050B
[54] IC was included to convert the 5V of the PIC MISO lines into 3.3V.

5A “cute” detail is that just so happens that the SDI (or MOSI) pin in the PIC18F2431
is one of the very few pins in which this is NOT true, so a pull-up had to be included to
take the voltage slightly up for the communication to work. This was discovered after the
production of the PCBs, so an adhoc pull up had to be added to the final board.

37

Another problem is that the SS pin of the PIC18F4680 is also the analog
pin AN4. The issue is that the analog pins cannot be selected independently
of the rest. For example, in order to use AN5, AN1-4 must be set as analog
pins. Hence, overriding AN4 to be used as SS pin would mean that only AN1-
3 can be used. This is not enough analog pins to control the 8 range finders
and 2 line-following. To solve the problem, we used the SS pin as AN4, and
connected the slave select wire to the external interrupt pin (INT0). An extra
module and interrupt had to be configured and programmed, and hence the
slave SPI code in the PIC18F4680 is different from the one in the other PICs.

Finally, the reset line of all three PICs are driven by the PC104, so that the
PICs are taken out of reset after the PC104 is ready to start communication.

Configuration without the PC104

As already stated, it is desirable that the PC104 may be replaced by some
other processing unit or taken away completely. This poses the need to put
in all the electronics so that one of the three PICs can be the master of the
SPI communication. Moreover, this PIC needs to communicate to an external
processing unit by a more common communication protocol, such as USART.
In the PIC18F2431, the SPI pins overlap with the USART pins, so both cannot
be implemented at the same time. Hence, the PIC18F4680 takes up the master
spot in this configuration, implementing both the SPI master communication
and the USART communication.

Several jumpers need to be included to reconnect the MOSI/MISO, Slave
Select and Reset lines. When the PIC18F4680 is a slave, its communication
output line is connected to the input line of the master. When it is the master,
it’s output line needs to be connected to the input line of the other PICs. The
slave select and reset lines suffer a similar fate, since they need to be driven
by the PIC18F4680 instead of the PC104. For the RS232 communication,
although the PIC has a module to produce the appropriate USART protocol,
a MAX232 [55] driver was included to translate between the -11,+11V RS232
voltage range and the PIC’s 0-5V voltage range.

Software

The developed communication protocol follows the Open System Interconnec-
tion (OSI) model, implementing some of its seven layers. In the master of
the communication, Physical, Data Link, Network and Application layers are
implemented. Since the slaves never start the communication, the network
layer is not needed and hence not implemented in the slaves.

Configuration with the PC104

Code in the SPI Master (PC104)

38

Physical layer: The SPI physical module in the PC104 implements two
independent receive and transmit FIFOs that can be configured to hold up to
eight words of 1 or 2 bytes each. It can be configured to work with interruptions
or polling. The Slave Selects are managed separately through the Digital Input
Output pins. Three DIO pins are connected to the three PIC slaves.

Link layer : The link layer packet sizes have an upper limit that is given
by the SPI physical buffers, which can hold up to eight words of 1 or 2 bytes.
Since the SPI physical modules in the PICs can hold up to one byte, the SPI
words were set to 1 byte long. The packet size is of course reconfigurable. In
the current code it is set to four bytes.

Network layer : The network protocol is implemented in the PC104 and
manages the reception and sending of packets to the three slaves. For each slave
it stores two buffers: one for received packets and another one for packets that
need to be sent. The dispatching routine implements a round-robin algorithm
that runs every 10 ms, sending and receiving packets from each slave at a time.
Figure 2.19 shows the interactions between network, link and physical layers to
implement this dispatching routine. The net layer exports read packet() and
send packet() functions that actually copy packets from/to the corresponding
reception and sending buffers. The network layer packet formats can be seen
in Table 2.3.

Application layer : A library is implemented to abstract the SPI and net-
work communication details from a user application. For one, the library
implements the decoding of sensor data and encoding of commands, following
the network layer packet format (see Table 2.3), and using the read packet()
/ send packet() functions exported by the network layer. Since to receive
data from a slave the SPI master needs to send data, the library thread regu-
larly sends a packet to every slave -containing commands or dummy data-
to get an answer (e.g., to get the latest sensor readings). This applica-
tion library, called libexabot, exports the following functions: exa initialize(),
exa deinitialize(), exa set motors(), exa set sensors(), exa reset odometry(),
exa receive(), exa IR distances(), exa sonar distance(). The last two func-
tions implement the transformation of raw range finder and sonar measures to
distance in cm as explained in subsection 2.3.5.

External communication In this configuration, communication with exter-
nal PCs is done by Wi-Fi or cabled Ethernet. In both cases, the User Data-
gram Protocol (UDP) was used. The preference of UDP over TCP for robot
control from an external PC comes from the fact TCP is connection-oriented
and hence provides reliable ordered delivery of the stream of packets (even
if that means retransmitting and buffering packets). In contrast, UDP does
not guarantee every packet is received, but sends packets as they are received
and does not buffer or retransmit any information. As already discussed, in
robot control the timing of the commands and the return information is vi-

39

From To Information packet format

PC104 Sensor PIC
turn sensor on [0x01, sensor, U,U]
turn sensor off [0x02, sensor, U,U]

Sensor PIC PC104 Sensor Info [sensor, val1, val2, val3]
PC104 Motor PIC set velocity [0x10, vel, U,U]

Motor PIC PC104 odometry [0xf0, delta,countH, countL]

Table 2.3: Network layer packet formats. This can be extended if new sensors are
added. sensor: 0x00 : three left range finders, 0x01: three middle range finders,
0x02, three right range finders, 0x03:sonar, 0x04: line-following, 0x05: bumper

tal. Receiving all commands together and late as would happen with a TCP
connection is far worse than eventually loosing some command because the
UDP connection does not guarantee packet delivery. If the robot receives ten
commands together, it will execute them all but in a late moment when the
environment conditions may have already changed, making those commands
useless or harmful. The UDP protocol is implemented using sockets, shared
memory for the receiving and sending buffers and two threads: one for receiv-
ing and a main thread that sends data back if required.

In total, three threads are running in the PC104 to complete communica-
tion: one for the complete OSI stack of SPI, one for the UDP receive, and one
for the UDP send.

Code in the SPI Slaves

In the PICs, only the physical, link and application layers are implemented.
In this case, the Physical SPI module has only a one-byte buffer for both
incoming and outcoming data, an hence lifts an interrupt when each byte is
received.

Figure 2.20 shows a state machine diagram with typical interactions be-
tween the different layers to implement the slave protocol. The state diagram
shows the different states in the Link layer, including three of its internal vari-
ables (receive and send buffers, and next byte to send). The transitions are
given by the Physical layer interruptions when a byte is received PHY SPI ISR;
and the calls from the Application layer to the two exported Link layer func-
tions: SPI send packet and SPI receive packet. In any state, the applica-
tion layer can call these link layer functions: when these transitions are not
explicitly drawn, the functions return false, and no transition is performed
(i.e., no packet is copied from/to the link buffers).

In this state diagram, the reception starts when there is a packet to send.
If there is no packet to send, then only dummy bytes are sent (depicted as D

in the diagram). Also, if a reception starts before a previous packet has been
read by the application, then the old packet is lost. That is why after receiving

40

Net Layer Link Layer Physical Layer DIOTimer

struct Slave {
 uchar send_buffer[MAX_PACKS*SIZE_PACK];
 uchar send_count; //of packets
 uchar rcv_buffer[MAX_PACKS*SIZE_PACK];
 uchar rcv_count; // of packets
 unsigned char dir_link; // DIO for the SPI Slave Sel.
};

struct Net {
 slave slaves[SLAVES_QTY];
 uchar lastSent;
};

alt

[net.last_sent != None]

lastSL = net[slaves.last_sent]

loop

[phy_rcv_fifo is not empty]

alt

[nextSL != None]

loop

[copied bytes < size_packet]

Net Layer structures:

[every 10 ms]:net_admin()

deactivate(lastSL.dir_link)

DIO(last_SL.dir_link) = 1

receive_paq(lastSL.rcv_buffer)

lastSL.rcv_buffer[i]= read_byte(phy_rcv_fifo)

lastSL.rcv_count++()

nextSL= next_slave_with_packets_to_send()

activate(nextSL.dir_link)
DIO(nextSL.dir_link) = 0

send_packet(nextSL.send_buffer)

send_FIFO.push(nextSL.send_buffer[i])

reorder(nextSL.send_buffer)

nextSL.send_count --()

net.last_sent = nextSL()

Figure 2.19: Sequence diagram showing the interactions between the different OSI
layers to implement the network protocol dispatching routine.

41

All empty

rcv_buffer = {D,D,D,D}
snd_buffer = {D,D,D,D}
byte_to_send = D

Ready to send

rcv_buffer = {D,D,D,D}
snd_buffer = {b,c,d, D}
byte_to_send = a

1st byte Received/Sent

rcv_buffer = {a',D,D,D}
snd_buffer = {c,d,D, D}
byte_to_send = b

2nd byte Received/Sent

rcv_buffer = {a',b',D,D}
snd_buffer = {d,D,D, D}
byte_to_send = c

3rd byte Received/Sent

rcv_buffer = {a',b',c',D}
snd_buffer = {D,D,D,D}
byte_to_send = d

Complete Packet

Received/Sent

rcv_buffer = {a',b',c',d'}
snd_buffer = {D,D,D,D}
byte_to_send = D

[PHY_SPI_isr(d')]
/sent_byte = d
new_packet_rcvd =
true

[SPI_receive_packet()]
/return true
rcvd_packet={a',b',c',d'}
new_packet_rcvd = false

[PHY_SPI_isr(c')]
/sent_byte = c

[PHY_SPI_isr(b')]
/sent_byte=b

[PHY_SPI_isr(a')]
/sent_byte=a

[SPI_send_packet
({a,b,c,d})]
/return true

[SPI_receive_packet()]
/return false

Figure 2.20: State Diagram showing a typical interaction of Phisycal, Link and
Application layers to send and receive a packet

the fourth byte of a packet, the link layer asserts the new packet rcvd flag.
This flag performs the synchronization with the application layer: it is checked
in the main loop of each PIC. When it is asserted, the SPI receive packet

is called; and a new packet of data is sent using the SPI send packet.

There is one type of packet for the motor PICs, and six for the sensor PIC
(see Fig. 2.3). The sensor PIC packets are sent back in turns; and only the
packets corresponding to the turned on sensors are sent back. Hence, if only
the sonar is turned on, then all the packets from the sensor PIC include sonar
values. Moreover, the last sensor data is sent.

Configuration without the PC104

When the PC104 is absent, the code for the SPI master is implemented in
the Sensor control PIC. This implementation follows the same link, application
and network layer algorithms (i.e., the packet is four bytes long, the commands
are the same, and the round-robin network dispatching routine is the same).
The changes reside in the physical layer- since the SPI physical module is
different in the PIC and in the PC104-, and in the way it is programmed
In the physical layer, the main difference is that the PIC has only one byte
of physical buffer (for both reception and sending), and the PC104 has two
separate reception and sending FIFO buffers. Since the link and network
algorithms in the master are unchanged, the implementation in the slaves (i.e,
the other two PICs) is also unchanged.

External communication In this configuration, communication with exter-
nal PCs is done by cabled RS232. The Sensor PIC receives commands to turn
on/off sensors and change motor speed, and redistributes those commands us-
ing the SPI network. Regularly, it forms a packet with all the data from the
motors and sensors, and sends that packet through the RS232 connection.

42

Prototyping

To prototype the communication subsystem, the prototype boards for the
sensor and motor subsystem and the PC104 were connected. In order to test
with the PC104, a small perfboard with a DIP CD4050B and two connectors
was created to solve the 3.3V to 5V needed conversion. As in the other sub-
systems, the PIC programming was done using C language, Microchip’s C18
compiler and MPLAB environment, and the oscilloscope was used for debug-
ging real-time signals. The PC104 was programmed in C using the available
cross-compilers. In Fig. 2.21 the connected prototype boards for the ExaBot’s
communication subsystem can be seen.

Figure 2.21: Prototype boards for communication subsystem. In this configuration,
the prototype board of the Motor Control is connected to the PC104 through the
perfboard with the CD4050B IC.

2.3.8 Subsystem Integration: Programming

The programming pins of each PIC are exported in a RJ45 connector. In this
manner, each of the three pics can be easily programmed in the final board.
There are not many things to note about this subsystem. Since the Microchip
programmer needs to manage the PIC resets when programming, a switch was
included for each PIC reset line to switch the control between the programmer
and the SPI master. There is no special software for this subsystem. The
existence of this subsystem is fundamental for the multiple code changes in
the ExaBot, due to its reconfigurable characteristics.

43

2.3.9 Subsystem Integration: Power

Once every sensor, actuator, IC and analog logic is defined, the exact require-
ments for the battery and the power subsystem can be calculated. The first
conclusion from the previous sections is that there is need for two different reg-
ulated voltages: 7,2V for the motors and 5V for the ICs and sensors. Hence,
there are two separate batteries and power stages. The batteries used are
rechargeable Lithium-Ion cells6. Each battery cell provides between 3,6V and
4,2V, and its cappacity is 1,9 AmpH.

Motor power subsystem

Each motor needs regulated 7,2V and sinks a maximum of 2 Amp. To obtain
the regulated voltage, a minimum of 3 cells in series is needed. This also covers
the required current. To regulate to 7,2V for this kind of current, a LM350[56]
regulator IC was used. This is a 3.0 Amp adjustable output (between 1.2V
and 33V) positive voltage regulator. Each motor has its own regulator, and
the adjustment to 7.2V is achieved with a variable resistance in the regulator
circuit. Moreover, each motor has its own 3 Amp fuse in the event that the
motor consumes more than the specified current.

Logic and sensors power subsystem

The logic and the sensors require regulated 5V. Since we are using a linear
voltage regulator, this means that the battery needs at least 2 cells in series.
The amount of cells in parallel depend on the consumption of all the compo-
nents. In table 2.4, typical and maximum consumption for all ICs (including
the PC104) and sensors can be found. Initially, we built batteries with only
two cells (in series), since the calculated consumption was below the 1,9 AmpH
cell capacity and this meant that the battery would last more than an hour.
However, lately we are building batteries with 4 cells (two in parallel and two
in series), to get extra autonomy for longer experiments. A LM323 voltage
regulator [57] was included. This is a 3 Amp, 5V positive voltage regulator,
that is enough for the calculated consumption. A fuse was also included.

6Recently Lithium-ion polymer batteries have also been used.

44

Component typical max total typ. total max.
PC104 450 450 450 450
Sensor Subsys
8 GP2D120 33 50 264 400
1 SRF05 4 15 4 15
1 PIC4680 23 40 23 40
1 MAX232 8 10 8 10
Total - - 316 465
Motor Subsys
2 L298 50 70 100 140
2 ACS712 10 13 20 26
2 PIC2431 23 40 46 80
Total - - 166 246
Power Subsys
2 LM350 3.5 10 7 20
1 LM323 12 20 12 20
Total - - 19 40

Estimated Total 951 1201

Table 2.4: Typical and Maximum consumption rates of the main(i.e., most consum-
ing) ICs and sensors to estimate the 5V battery requirements. All measures in mA.
PICs running at 40 Mhz.

2.3.10 Subsystem Integration: Design and Test of the
final PCB

Final Schematic Design

The final schematic was captured using Novram’s Diptrace, integrating the
schematics for each of the subsystems and making the final changes.

An important feature in the final design is the inclusion of sensor expansion
ports. Although all the pins in the PIC18F4680 are used up, the two PICs that
control the motors have several pins that are not used. In the final circuit, the
pins needed for motor control were planned in those PICs in order to maximize
the possible applications of exported pins. In this way, the ExaBot has two
expansion ports, each one exporting the following:

• one analog pin (to connect any analog sensor like infrared range finders,
light sensors, etc)

• one CCP pin (Capture/Compare/PWM module like the one used to
control the sonar).

• a PWM pair (Pulse Width Modulation module, like the ones used to

45

control the motors).

• the INT0 pin (external interruption pin).

• GND and Vcc.

These expansion ports may prove a very powerful tool to add sensors and func-
tionality to the ExaBot. The programming needed to control these added sen-
sors can be done with the exported programming ports for each PIC18F2431

The final schematic for the complete board can be found in appendix A.
This schematic has six sheets. The motor subsystem can be seen in sheets
motor 1, motor 2 and motor flt; the sensor subsystem can be seen in sheet
sensores, the communication subsystem in sheets con pc104 and sensores,
the power subsystem in sheet power, and the programming subsystem in sheet
con pc104.

Final PCB routing

The complete schematic is exported to the PCB routing program and the fi-
nal circuit is routed. The correct footprint for each final IC has to be used.
Although there are several footprint libraries, many ICs do not have avail-
able footprint so these have to be hand drawn respecting the exact package
dimensions. These can be found in the corresponding data sheet.

The space restrictions, the sensors and actuators spatial configuration need
to be taken into account. Also, all the routing rules need to be followed. Some
of these are: width of the path depending on the current, minimum distance
between paths, or maximum angle in the paths. Other rules depend on the
function of the signals, for example, all the paths that are in a bus need to have
roughly the same length so that the signals arrive approximately at the same
time (e.g., the clock and data paths in the SPI bus). Also heat dissipation
needs to be thought, for example with ground coating over unused parts of
the board or with extra dissipation for over heating ICs (such as the voltage
regulators). For details on this type of rules, see chapter 12 of [33]. The final
routed board for the ExaBot has two layers and can be seen in appendix A.

Board production and testing

Before sending the board to production, it was peer reviewed and several
bugs were found. After production, all the ICs, resistances, transistors and
capacitors were soldered. Then, special code was programmed to electrically
test each pin of the board. In that phase, several bugs were found in the
final circuit, luckily these bugs could be fixed and none required an additional

46

iteration of the board. However, these bugs form a list of known issues, that
need to be fixed if a new iteration of boards is produced.

Software

The complete software has already been described in the subsystem refinement
sections. At this point the complete software can be tested in the final board.
For this, the code for each subsystem is tested separately, and in each subsys-
tem every module is programmed and tested separately. Then, every module
is integrated one by one testing that the previous capabilities are still valid.
To program the code, Microchip’s MPLAB environment and C18 compiler was
used. For debug, apart from the PIC debugging capabilities, the Textronik
oscilloscope and tester were also used.

2.3.11 Final Mounting

In the final mounting stage, the chassis was modified to mount all sensors, the
final board and batteries. Moreover, all the cables were done. In Fig. 2.22
three configurations of the final ExaBot can be seen.

(a) (b) (c) (d)

Figure 2.22: Four different configurations of the ExaBot: a) with all the sensors
and PC104 b) with a smart phone, c) with a netbook and a 3D Minoru Camera,
d) with an embedded Mini-ITX board and a FireWire Camera

2.4 Applications

Different configurations of the ExaBot were used in several applications ful-
filling all the goals the ExaBot was designed for. In this section we briefly
comment some of them.

47

2.4.1 Research: Autonomous visual navigation

The main research activities with the ExaBot are related to autonomous visual
navigation, both with monocular or 3D cameras.

An important work presents a new real-time image based monocular path
detection method. It does not require camera calibration and works on semi-
structured outdoor paths. The core of the method is based on segmenting
images and classifying each super-pixel to infer a contour of navigable space.
To achieve real-time computation necessary for on-board execution in mo-
bile robots, the image segmentation is implemented on a low-power embedded
GPU. For these experiments, the ExaBot was configured to use an embedded
Mini-ITX board (AT5ION-T Deluxe) -that includes a 16 core NVIDIA GPU-
as a main processing unit, and a firewire camera (model 21F04, from Imaging
Source) as the only exteroperceptive sensor (see Fig. 2.22, image d). The
PC104 was taken away, and the AT5ION-T connects through RS232 to the
PIC18F4680 as explained in section 2.3.7. This work was published in the pro-
ceedings of the 18th Iberoamerican Congress on Pattern Recognition, CIARP
2012 [58], and in the Journal of Real-Time Image Processing [59].

The same configuration of the ExaBot was used as the platform for all the
experiments in a completed PhD Thesis entitled “Vision-based mobile robot
system for monocular navigation in indoor/outdoor environments”[60]. The
thesis proposes a hybrid method for navigation that combines the aforemen-
tioned segmentation-based navigation method to follow paths, and a landmark-
based navigation method to traverse open areas.

Another work presents the use of disparity maps for obstacle avoidance
using two cameras. In this work, a common notebook or netbook is used
as a main processing unit and a cheap Minoru 3D USB webcam as the only
exteroperceptive sensor. The notebook connects through cabled Ethernet to
the PC104, although the PC104 can be taken away if an appropriate convertor
between USB and RS232 is provided for the notebook (see Fig. 2.22, image c).
This work was published in the VII Jornadas Argentinas de Robótica, JAR
2012 [61]. An extension of this work using elevation maps was presented in
the IEEE RAS Summer School on Robot Vision and Applications 2012 [62].

Two undergraduate students are doing their thesis on monocular visual
odometry using as a main processing unit- and as the camera sensor- an
Android-based smart-phone. This again presents a different configuration of
the ExaBot (see Fig.2.22, image b). In this case, the Android cellphone con-
nects through wi-fi to the on-board PC104. This is an ongoing work, the thesis
will probably be presented during April 2013.

Moreover, an undergraduate student is currently working on integrating a
SICK TIM310 laser range finder to perform laser-based navigation. Finally,
another student is integrating a compass sensor to perform sensor fusion with

48

the encoders and achieve a better localization estimation than pure encoder-
based odometry. These works will be integrated in further autonomous navi-
gation experiments.

2.4.2 Outreach

The ExaBot is also used in Educational Robotics courses, talks and visits. Ed-
ucational Robotics proposes the use of robots as a teaching resource that allows
inexperienced students to approach fields other than specifically robotics. Over
the last years, Educational Robotics has grown substantially in elementary and
high-school classrooms and also in outreach experiences to interest students
in STEM7 undergraduate programs. A key problem is to have an adequate
easy-to-use interface between inexpert public and robots. Hence, one of the
developments of the lab is a new behavior-based application for programming
robots, specially the ExaBot. Evaluation data on the application show that
over 90% of students find it easy to use. In Fig. 2.23 two snapshots of this
programming interface can be found.

a b

Figure 2.23: Easy Robot Behavior-Based Programming Interface: a) Main view. The upper
panel shows the main control functions: left: new, open, save. center: play, new timer, new
counter.right: close, b) A screen shot of the Braitenberg view. The left panel shows the
robot schema and the transfer functions that can be used (top-down: inhibitory, excitatory,
broken, constant). In the center of the work canvas all the sensors are shown (top-down: 2
line-followings, 6 infrared telemeters, 1 sonar, 2 bumpers). The wheels are shown on each
side of the work canvas. The programmed behavior is a simple explorer that moves around
at constant speed and can avoid obstacles

Robotic-centered courses and other outreach activities were designed and
carried on. In the last years, three eight-week courses, five two-days courses,
more than ten one-day workshops and talks were taught to different high school
students with the programming interface and several ExaBots. Also, the lab
participated in several big expositions such as ExpoUBA or INNOVAR. These

7Science, Technology, Engineering and Mathematics

49

activities are part of a comprehensive outreach program conducted by the
Exact and Natural Science Faculty of University of Buenos Aires, Argentina
(FCEN-UBA). Statistical data show that since 2009 over 35% of new stu-
dents at the FCEN-UBA had participated in some outreach activity, showing
a significant impact of these activities in student enrollment at STEM-related
careers.

For this work, the ExaBot was configured with the PC104 as the main
processing unit and all the exteroperceptive sensors described in section 2.3.2:
IR telemeters, sonar, bumpers and line-following (see Fig. 2.22, image a)
These works resulted in one graduate thesis, and two papers: one in the 4th
International Conference on Research and Education in Robotics [63] and a
more complete one in the IEEE Transactions on Education Journal [64].

2.4.3 Undergraduate Education

The ExaBot is also used in undergraduate and graduate courses of the Departa-
mento de Computación, FCEN-UBA. In particular, it is used in the Robotics
Vision course8. The course covers several topics on monocular 2D images
and two cameras 3D images. Then, several algorithms for robot autonomous
navigation are programmed and tested using the ExaBot. This course has
been taught in two semesters during 2011 and 2012, and it is currently being
taught. The ExaBot was also used in short lessons in other courses such as
Organización del Computador I, mainly to show microcontroller programming
guidelines.

2.5 Publications

In this section, the publications about the ExaBot and the papers using the
ExaBot are summarized.

We have published one journal article describing the ExaBot architecture,
and also two short papers in conferences:

• 2010 A mobile mini robot architecture for research, education and pop-
ularization of science, Sol Pedre, Pablo de Cristóforis, Javier Caccavelli
and Andrés Stoliar, Journal of Applied Computer Science Methods,
Guest Editors: Jacek Zurada and Pablo Estevez, vol 2, no 1 pp 41-59,
ISSN 1689-9636.

• 2009 ExaBot: a mini robot for research, education and popularization of
science, Pablo De Cristóforis, Sol Pedre, Javier Caccavelli and Andrés

8see the course webpage http://www-2.dc.uba.ar/materias/visrob/

50

Stoliar. Poster in VI Latin American Summer School in Computational
Intelligence and Robotics - EVIC2009, Santiago, Chile, December 2009.
Third price in poster contest.

• 2008 Exabot: un robot para divulgación, docencia e investigación, Pablo
De Cristóforis, Sol Pedre y Juan Santos. Short communication in V
Jornadas Argentinas de Robótica – JAR08, Bah́ıa Blanca, Argentina,
November 2008.

The ExaBot was also used as a robotic platform for experiments in two
journal papers, three conference papers and one poster:

• 2013 Real-time monocular image based path detection, Pablo de Cristóforis,
Mat́ıas Nitsche, Tomáš Krajńık and Marta Mejail. Journal of Real Time
Image Processing, Springer Berlin Heidelberg, ISSN 0018-9162. In press,
to appear may-june 2013.

• 2013 A Behavior-Based approach for educational robotics activities, Pablo
de Cristóforis, Sol Pedre, Mat́ıas Nitsche, Thomas Fischer, Facundo Pes-
sacg, Carlos Di Pietro, vol. 56, number 1, pp 61-66, IEEE Transactions
on Education, ISSN 0018-9359.

• 2012 Stereo vision obstacle avoidance using disparity and elevation maps,
Taihú Pire, Pablo de Cristóforis, Mat́ıas Nitsche and Julio Jacobo Berlles,
IEEE RAS Summer School on Robot Vision and Applications, Santiago,
Chile. December 2012. (Poster)

• 2012 Real-Time On-Board Image Processing Using an Embedded GPU
for Monocular Vision-Based Navigation, Mat́ıas Nitsche and Pablo de
Cristóforis, 18th Congress of Iberoamerican Pattern Recognition, CIARP
2012, Buenos Aires, Argentina. Lecture Notes in Computer Science,
Springer Berlin Heidelberg, vol 7441, pp 591-598.

• 2012 Evasión de obstáculos en tiempo real usando visión estéreo, Taihú
Piré, VII Jornadas Argentinas de Robótica - JAR12, Olavarŕıa, Ar-
gentina, November 2012.

• 2011 A new programming interface for Educational Robotics, Javier
Caccavelli, Sol Pedre, Pablo de Cristóforis, Andrea Katz and Diego
Bendersky, 4th International Conference on Research and Education in
Robotics, EUROBOT 2011. Prague, Czech Republic. Communications
in Computer and Information Science, Springer Berlin Heidelberg, vol
161, pp 68-77, ISSN 1865-0929.

51

2.6 Conclusions

In this chapter, we described the co-design of a control embedded system ap-
plying the traditional flow in which processors and off-the-shelve ICs are com-
bined: the development of the mini-robot ExaBot. This system has stringent
real-time, power consumption and size requirements, providing a challenging
case study.

To successfully design and build the robot prototype, the traditional co-
design flow was adapted to the autonomous robotics field. The resulting flow
has six stages, starting from the robot’s goal definition, going through sub-
system partition and refinement, all the way to the final mounting. All this
stages were applied to develop the robot prototype, and are described in detail
in this chapter. The main goal for pursuing this task was to obtain a low-cost
robot- i.e., ten times cheaper than commercially available research robots- that
could be used not only for research, but also for outreach activities and edu-
cation. In this sense, neither the commercially available research robots nor
the commercially available educational robots were a suitable solution.

The main requirement to achieve a low cost robot that could be used for
such diverse fields was that the robot is highly reconfigurable. Hence, the
ExaBot was designed with many sensors and built-in sensor expansion ports.
Also, the high level processing unit is reconfigurable. So far, the ExaBot
was used in four main configurations in our lab: with the PC104 and most
sensors for Educational Robotics activities; with a netbook/notebook and the
Minoru Camera; with an embedded GPU and different cameras; and with an
Android-based smart phone.

Six ExaBot robots are currently in use in the Laboratorio de Robótica y
Sistemas Embebidos of the FCEN-UBA. They have been used for educational
robotics activities for high school students, research experiments in mobile
robotics, and education in graduate and undergraduate university courses. In
the Educational Robotics field, robotic-centered courses and other outreach
activities were designed and carried on. In the last years, three eight-week
courses, five two-days courses, and more than ten one-day workshops and talks
were taught to different high school students, using the ERBPI programming
interface developed in our lab and several ExaBots. The ExaBot is also used in
graduate and undergraduate courses at the Departamento de Computación,
FCEN-UBA. Finally, the ExaBot is used for research activities at our lab,
mainly in vision-based autonomous navigation. It has been used to make
experiments in one finished and two ongoing PhD thesis; and in three finished
and two ongoing graduate thesis. In this manner, the ExaBot was the platform
used for experiments in two journal articles, three conference articles and one
poster.

52

Chapter 3

Embedded Systems using
FPGAs

Real-time hotspot detection

Some embedded systems require massive data processing with real-time con-
straints that cannot be met with the standard microprocessor and IC approach.
Examples include digital signal processing methods such as image, video or au-
dio processing, and their applications to robotics, remote sensing, consumer
electronics among many other fields. In these cases, solutions based on Field
Programmable Gate Arrays (FPGAs) or the design of particular ASICs (Ap-
plication Specific Integrated Circuits) are common. These approaches take
advantage of the inherent parallelism of many data processing algorithms and
allow to create massive parallel solutions. They also allow tailored hardware
acceleration, e.g., with particular memory access patterns or bit tailored mul-
tipliers/adders. ASICs provide the best solution in terms of performance,
unit cost and power consumption. FPGAs are designed to be configured by
a designer after manufacturing- hence “field-programmable”. The ability to
update the functionality after shipping, partial re-configuration of a portion of
the design, and the lower non-recurring engineering costs and shorter time-to-
market compared to an ASIC design, offer advantages for many applications.
According to the 2012 Embedded Market Survey, 35% of the surveyed engi-
neers are currently using FPGAs in their designs [13].

In this chapter we introduce a traditional FPGA design flow and apply
it to a remote sensing application that requires massive data processing with
real-time constraints [21]. The main contributions in this chapter are:

• The introduction of a traditional FPGA design flow, derived from the
analysis of design flows presented in several foundational FPGA books.
A short comparison with those design flows is also presented. Also, pros
and cons of this type of design flows are discussed, based on bibliograph-

53

ical research and our own experience.

• The proposal of a novel algorithm to segment real-time video from an
infrared camera on an UAV (Unmanned Aerial Vehicle) in order to find
the location and spatial configuration of hot spots present in each frame.
To process each pixel, the algorithm only uses the information of the pre-
vious line of pixels, enabling a parallel implementation that can process
the image as it is being acquired to meet tight real-time constraints.

• The implementation of this algorithm following the presented traditional
FPGA design flow. The FPGA solution takes the analogical output of
an IR camera, process the frames in real-time and sends the informa-
tion of found hotspots in Ethernet packets. The implemented solution
successfully segments the image with a total processing delay equal to
the acquisition time of one pixel (that is, at video rate). The processing
delay is independent of the image size. Sizing equations are presented,
and timing, area and power results are discussed.

This chapter is organized as follows. Section 3.1 introduces FPGAs, in-
cluding their field of application and importance, while section 3.2 presents a
description of FPGA basic architecture. Section 3.3 introduces the traditional
FPGA design flow. In section 3.4, this flow is applied to obtain a real-time
hot spot detection using FPGA for the UAV application. Finally, discussion
and conclusions are presented in section 3.5.

3.1 Introduction

The concepts of this section are mostly taken from three important books of
FPGA design: Wayne Wolf’s “FPGA-Based Design” [6], Clive Maxfield’s “The
Design Warrior’s Guide to FPGAs” [1] and Cofer and Harding’s book “Rapid
System Prototyping with FPGAs” [2]. Other works are cited as required.

3.1.1 What is an FPGA?

Field programmable gate arrays (FPGAs) are digital integrated circuits (ICs)
that contain configurable (programmable) blocks of logic along with config-
urable interconnects between these blocks. Design engineers can configure
(program) such devices to perform a tremendous variety of tasks. The “field
programmable” portion of the FPGA’s name refers to the fact that its pro-
gramming takes place “in the field” (as opposed to devices whose internal
functionality is hardwired by the manufacturer). This may mean that FPGAs
are configured in the laboratory, or it may refer to modifying the function of a

54

device resident in an electronic system that has already been deployed in the
outside world.

3.1.2 Why are FPGAs of interest?

Some embedded systems require massive data processing with real-time con-
straints that cannot be met with the standard microprocessor and IC approach.
In these cases, solutions based on Field Programmable Gate Arrays (FPGAs)
or the design of ASICs (Application Specific Integrated Circuits) are common.

Nowadays FPGAs contain million of logic gates and can be used to imple-
ment extremely large and complex functions that previously could be realized
only using ASICs. The cost of an FPGA design is much lower than that of
an ASIC (although the ensuing ASIC components are much cheaper in large
production runs). At the same time, implementing design changes is much eas-
ier in FPGAs, and the time-to-market for such designs is much faster. Thus,
FPGAs make a lot of small, innovative design companies viable because- in
addition to their use by large system design houses- FPGAs facilitate “Fred-
in-the-shed”-type operations. This means they allow individual engineers or
small groups of engineers to realize their hardware and software concepts on
an FPGA-based test platform without having to incur the enormous nonre-
curring engineering (NRE) costs or purchase the expensive toolsets associated
with ASIC designs.

These advantages are of particular interest in countries like Argentina.
Nowadays, Argentina has no capabilities for manufacturing complete ASICs,
and the initial cost for such designs make them prohibitively for small start-
ups. FPGAs offer the possibility for national small companies to design and
implement products that are adequate for our reality, or that could even re-
place imported products (given appropriate state policies). These not only
include possibilities for design companies, but also for functional and formal
verification start-ups that could verify those designs (and others). There are
already some companies in Argentina developing with FPGAs, such as INVAP
[65]. INVAP [65].

3.1.3 What are FPGAs used for?

When they first arrived on the scene in the mid-1980s, FPGAs were largely
used to implement glue logic, medium-complexity state machines, and rela-
tively limited data processing tasks. During the early 1990s, as the size and
sophistication of FPGAs started to increase, their big markets at that time
were in the telecommunications and networking arenas, both of which involved
processing large blocks of data and moving that data around.

55

Later, toward the end of the 1990s, the use of FPGAs in consumer, auto-
motive, and industrial applications underwent a very big growth. FPGAs were
(and still are) often used to prototype ASIC designs or to provide a hardware
platform on which to verify the physical implementation of new algorithms.
However, their low development cost and short time-to-market made them to
increasingly find their way into final products.

By the early-2000s, high-performance FPGAs containing millions of gates
became available. Some of these devices feature embedded microprocessor
cores, high-speed input/output (I/O) interfaces, and the like. The end result is
that today’s FPGAs can be used to implement just about anything, including
communications devices and software-defined radios; radar, image, and other
digital signal processing (DSP) applications; all the way up to system-on-chip
(SoC) components that contain both hardware and software elements.

FPGAs are currently growing into three major market segments: ASIC and
custom silicon, Digital Signal Processing, and physical layer communication
chips. Furthermore, FPGAs have created a new market in their own right:
reconfigurable computing.

By 2010, FPGAs comprised a 4 billion dollar market, with leading appli-
cations in communications and industry [66]. Fig. 3.1 shows the distribution
of FPGA market by end applications [67].

Figure 3.1: FPGA market by end application

Moreover, FPGA vendors offer particular families for different end appli-
cation. For example, Xilinx offer families and solutions for applications in
Aerospace and Defense, ASIC Prototyping, Audio, Automotive, Consumer
Electronics, Data Center and several others (See [68]).

56

3.2 FPGA Basic Architecture

FPGA devices are based on a number of common configurable structures.
While there are minor and major variations in the implementation of these
structures between manufacturers and device families, the structures are com-
mon to almost all mainstream FPGA devices. The fundamental FPGA struc-
tures are:

• Logic Blocks

• Routing Matrix & Global Signals

• I/O Blocks

• Clock Resources

• Memory

• Multipliers, Adders, DPS blocks.

• Advanced Features (e.g, hard embedded processors).

In following sections we briefly describe this structures. Most of the con-
cepts of this section are taken from [1] and [2].

3.2.1 Logic Blocks

FPGA logic blocks may have different architectures within different families,
even if they are from the same manufacturer. Each manufacturer tends to call
the lowest-level FPGA logic block by different names, e.g. logic cell (Xilinx)
or logic element (Altera). A logic block will typically contain one or more N-
input look-up tables (LUTs) along with one or more flip-flops, signal routing
muxes, control signals and carry logic. In the advanced FPGA families, the
internal architecture of a logic block is often quite complicated.

Each LUT element can implement any Boolean function with N or fewer
inputs. A majority of the implementations of LUT architectures have four
inputs; and allow LUTs to be also used as distributed memory or shift registers.
Figure 3.2 shows a simplified Xilinx Logic Cell.

In order to support higher levels of functionality, logic blocks may be
grouped together by the manufacturer, forming a larger structure. Some ex-
ample names for these combined logic block groups are: tile, configurable logic
block (CLB) and logic array block (LAB). Fig. 3.3 shows a simplified array of
Xilinx’s CLBs.

57

Figure 3.2: Simplified Xilinx Logic Cell (figure taken from [1])

Figure 3.3: Simplified Xilinx CLB, comprising 4 Slices of 2 Logic Cells each. (figure
taken from [1])

3.2.2 Routing Matrix & Global Signals

The fundamental routing elements for an FPGA are the horizontal/vertical
routing channels and programmable routing switches. The function of the
horizontal and vertical routing channels is to provide a connection mechanism
between routing switches. The routing switch is programmable and can pro-
vide either 180- or 90-degree routing path. Figure 3.4 shows a typical routing
matrix.

Another mechanism that FPGA employs for connecting both switches and
CLBs is carry chain logic. Carry chain logic is commonly used to build large
efficient structures for implementing arithmetic functions within the general
logic fabric. Most manufacturers have also implemented global low-skew rout-
ing resources. These resources are typically limited in quantity and should
be reserved for high-performance and high-load signals. Global routing re-
sources are often used for clock and control signals, which tend to be both
high-performance and high-fanout.

58

Figure 3.4: FPGA routing signal (figure taken from [2])

3.2.3 I/O Blocks

The ring of I/O banks surrounding the array of CLBs is used to interface
the FPGA device to external components. I/O block (IOB) is a common term
used to describe an I/O structure. An IOB includes input and output registers,
control signals, muxes and clock signals. Fig. 3.5 shows a generic I/O block

Figure 3.5: I/O block

In order to interface to different types of logic, I/O Blocks are highly config-
urable. Possible configurations include direction (input, output, bidirectional),
data rate (SDR, DDR, SERDES), I/O standard (single-ended, differential, ref-
erenced, etc.) and I/O voltage (1.2 V to 3.3 V for single-ended standards).

59

3.2.4 Clock Resources

Clock Tree

All of the synchronous elements inside an FPGA need to be driven by a clock
signal. Such a clock signal typically originates in the outside world, comes
into the FPGA via a special clock input pin, and is then routed through the
device and connected to the appropriate elements. Fig. 3.6 shows a simple
clock tree.

Figure 3.6: A simple clock tree (figure taken from [1]).

The clock tree is implemented using the special low-skew tracks and is
separate from the general-purpose programmable interconnect. Multiple clock
pins are available (unused clock pins can be employed as general-purpose I/O
pins), and there are multiple clock domains (clock trees) inside the device.

Clock Managers

Instead of configuring a clock pin to connect directly into an internal clock
tree, that pin can be used to drive a special hard-wired function (block) called
a clock manager that generates a number of daughter clocks (Figure 3.7).

Clock Managers are used to generate daughter clocks with frequencies that
are derived by multiplying or dividing the original signal; and/or by phase-
shifting it. They are also used to correct clock signals, for example by removing
jitter or correcting the skew from generated daughter clocks.

3.2.5 Embedded Memory

A lot of applications require the use of memory, so FPGAs include relatively
large blocks of embedded RAM called e-RAM or block RAM. Depending on

60

Figure 3.7: Clock Manager (figure taken from [1]).

the architecture of the component, these blocks might be positioned around
the periphery of the device, scattered across the face of the chip in relative
isolation, or organized in columns. Each block of RAM can be used inde-
pendently, or multiple blocks can be combined together to implement larger
blocks. These blocks can be used for a variety of purposes, such as implement-
ing standard single- or dual-port RAMs, first-in first-out (FIFO) functions,
state machines, etc. Fig. 3.8 shows the structure of a memory block.

Figure 3.8: Embedded memory block.

3.2.6 Multipliers, Adders, DPS blocks

Some functions, like multipliers, are inherently slow if they are implemented
by connecting a large number of programmable logic blocks together. Since
these functions are required by a lot of applications, many FPGAs incorporate
special hardwired multiplier blocks. These are typically located in close prox-
imity to the embedded RAM blocks because these functions are often used in
conjunction with each other.

61

Similarly, some FPGAs offer dedicated adder blocks. One operation that
is very common in DSP-type applications is called a multiply-and-accumulate
(MAC). This function multiplies two numbers together and adds the result to
a running total stored in an accumulator. Nowadays’ FPGA offer DSP blocks
that typically implement 18×18 bit multiplier, 48 + 48 bit adder/accumulator,
pre-adders for symmetric FIR filters and that can be dynamically configured
and highly pipelined (Figure 3.9).

Figure 3.9: Digital Signal Processing blocks

3.2.7 Advanced features

As FPGA devices and architectures continue to evolve, certain advanced struc-
tures will be implemented in significantly different ways by different manu-
facturers. Often these advanced FPGA structures and features are targeted
toward very specialized applications and technology specialties. Examples in-
clude enhanced clock features, specialized Intellectual Property (IP) cores or
advanced I/O standards and protocol support.

Of special interest to this thesis are embedded processors, as referred in
next chapter. FPGAs may contain one or more embedded microprocessors.
These processors may be hard or soft processors. A hard microprocessor core
is implemented as a dedicated, predefined block. As opposed to embedding a
microprocessor physically into the fabric of the chip, it is possible to configure
a group of programmable logic blocks to act as a microprocessor. These are
called soft cores.

62

3.2.8 The complete picture

Fig. 3.10 shows a generic FPGA architecture including the described struc-
tures.

Figure 3.10: Generic FPGA architecture (figure taken from [2])

3.3 Design Flows for FPGA

In this section, a standard FPGA design flow is presented. The concepts of this
section are taken from these books: Cofer and Harding’s “Rapid System Proto-
typing with FPGAs” [2], Chu’s “FPGA Prototyping by VHDL Examples”[3],
Maxfield’s “The Design Warrior’s Guide to FPGAs” [1], Wolf’s “FPGA-Based
System Design” [6] and Kilts’ “Advanced FPGA Design” [5]. The equivalence
of the presented flow with the exact ones showed in those books is presented
at the end of this section. It is important to point out that this is a generic
FPGA design flow, it may vary according to the particular application area.

The high-level design phases associated with FPGA design include require-
ments, architecture, implementation, and verification. The following descrip-
tions provide some detail on the tasks which must be completed during the
primary design phases specified:

• Requirements Phase Define and detail the required functionality, in-
terfaces, performance, and design margin. Develop and maintain a de-
sign requirement specification.

63

• Architecture Phase Partition design into functional blocks, allocate
functionality, and performance requirements. Define system architecture
and design hierarchy. Determine which design components will imple-
ment required functionality.

• Implementation Phase Code the design using a Hardware Description
Language (HDL), and then synthesize and place and route the design to
the particular FPGA. Several simulation steps can also be performed in
this stage to test the design.

• Verification Phase The design file that defines the state of every con-
figurable element within the FPGA is “downloaded” to the part. This
process is also referred to as “configuration’. Using external test equip-
ment and access to internal nodes, the design’s functionality and real-
world performance is verified.

In the next subsections two main phases of this flow are described: the
Architecture and Implementation Phases.

3.3.1 Architecture Phase

In this phase, the general architecture of the system is designed. The key
concept in this phase is hierarchichal design.

Hierarchical design is a standard method for dealing with complex digital
designs. It is commonly used in programming: a method is written not as a
huge list of primitive statements but as calls to simpler methods. Each method
breaks down the task into smaller operations until each step is refined into a
method simple enough to be written directly. This technique is commonly
known as divide-and-conquer- the method’s complexity is conquered by
recursively breaking it down to manageable pieces.

In digital circuits, implementing an informed subsystem partition in a hi-
erarchichal manner is an important method to increase a design’s ability to
absorb change, and decrease development time and complexity. In rapid de-
velopment, individual design subsystems can be developed concurrently by
isolated groups of specialists. This requires the development of individual
blocks designed to specific requirements, allowing independent development
and verification. Ideally, the modules should be designed so they are highly
independent of one another. This can isolate risks associated with functional
implementation and allow design modules to be updated with less disruption
to the rest of the design implementation. With a modular design approach,
the design integration phase can also progress more smoothly if the individual
modules’ functionality and interfaces have been correctly defined, implemented
and tested.

64

At this stage is important to consider a range of potential design imple-
mentation approaches. High-level and detailed FPGA system block diagram
and functional level block diagrams, including appropriate interface details,
are very useful. It is important to keep in mind that decisions made at this
stage might influence requirements, and also that implementation details of
the next phase might also change architecture. It is usual that partition is
done taking into account possible implementations of the modules down the
line.

Critical elements in a modular design are timing and design block inter-
faces.The selection of design boundaries can have significant effects on place-
ment and routing and overall compilation efficiency. The following is a list of
partitioning considerations to keep in mind:

• Group related functional blocks, or blocks that have many signals in
common. They have the greatest effect on the place-and-route process.

• Separate portions of the design that have different design goals (per-
formance, area, etc.). This allows the designer to apply appropriate
synthesis directives to specific design blocks.

• Where possible, divide groups along boundaries where signals are regis-
tered. Avoid assigning a boundary across combinatorial logic, since this
can interfere with logic optimization.

3.3.2 Implementation Phase

In this phase, each module of the architecture design is refined, implemented,
synthesized and simulated in an iterative manner until the module is function-
ally correct and meets all the timing and performance goals. Then, all the
modules are integrated and tested. Fig. 3.11 shows the stages in this phase.

HDL Capture

The design is captured using a Hardware Description Language, special lan-
guages used to describe digital circuits. The functionality of a digital circuit
can be represented at different levels of abstraction (Fig. 3.12).

The lowest level is the switch level, which describes the circuit as a netlist
of transistor switches. A slightly higher level of abstraction is the gate level,
which describes is as a netlist of primitive logic gates and functions. Both
switch-level and gate-level netlists may be classed as structural representa-
tions.

65

Post PAR Timing

Simulation and

Analysis

HDL Capture

Logic Synthesis

Behavioral Simulation

Synthesis Constraints

I/O, Timing and Area

Constraints

Physical Implementation

Translate

Map

Place & Route

[constraints
NOT met]

Generate Bitsream

/Program Device

Gate Level

Architecture Analysis

& Timing simulation

[no changes
needed]

[need changes
for timing
closure]

[no changes
needed]

affect

[need changes
in gate-level
design/ timing]

[no changes needed]

[need changes for correct behaviour]

affect

HDL code +
Testbench

Figure 3.11: Activity diagram of the Implementation phase of FPGA design flow

The next level of HDL abstraction is functional representations. This in-
cludes the description of functions using Boolean equations and also Register
Transfer Level (RTL) representations. In RTL descriptions, the clocked be-
havior of the design is expressly described in terms of data transfers between
storage elements in sequential logic (which may be implied) and combinatorial
logic (which may represent any computing or arithmetic-logic-unit logic). RTL
descriptions are said to be technology-independent (retargetable to different
device families), however, the architecture implied by the description is fixed 1.

The highest level of abstraction supported by traditional HDLs is known
as behavioral, that include constructs such as processes or loops. This usu-
ally does not imply specific timing. Hence, Behavioral descriptions are usually
architecture-independent : several RTL circuits can implement the same be-
havioral description, but with different timing, area and power implications.
Synthesis to gates, from a description at this level of abstraction, requires so-
phisticated tools. To influence the design implementation made by synthesis
tools, synthesis constraints can be applied. However, there is only so much
a synthesis tool with appropriate constraints can do: to ensure a particular

1A detail on this is that some synthesis constraints can change the final implied architec-
ture, e.g., the Register balancing constraint that is used to meet design timing requirements
by moving the placement of Boolean logic functionality across register boundaries

66

synthesized architecture, HDL software changes may be needed.

As a final comment, HDLs have a dual nature: they are not only used
for implementation but can also be used for simulation. Hence, there are
constructs in HDL which are syntactically correct but are not synthesizable
into a design that can be placed in a targeted FPGA. The two most commonly
used HDLs are Verilog and VHDL.

Figure 3.12: VHDL and Verilog levels of abstraction

HDL coding guidelines and patterns

Coding guidelines and patterns in HDL are very important because they
impact performance. One reason for this is that, although they might be log-
ically equivalent, different RTL statements can yield different architectures.
Also, tools are part of the equation because different tools can also yield dif-
ferent results. Hence, when coding in HDL, two things are important:

• To design the desired underlying hardware architecture for the particular
timing, area and power constraints of the module.

• To know which HDL constructs will synthesize that architecture.

This makes the discussion of how to code in HDL intrinsically related to the
discussion of how to design the underlying digital circuit to achieve the require
timing, area and power performance. It also makes HDL coding patterns, that
are known to synthesize particular architectures, very important.

Moreover, the ability of HDL to accurately describe the desired hardware
architecture can make HDL code very hard to understand, debug and main-
tain. To describe the concurrent nature of hardware, HDL code usually in-
cludes many low-level concurrent statements that become very difficult to un-
derstand when the number of concurrent statements surpasses some small

67

amount. This makes bugs very hard to find. Hence, coding guidelines and
patterns are important not only to assure the desired hardware is synthesized,
but also to enable understandable code among a variety of designers, a vital
point in moderate-to-big designs.

Complete books are written on HDL coding guidelines and patterns, so
a detailed description is clearly out of scope of this thesis. However, it is
important to point out some ideas to get a picture of the problem the work
on this thesis aims to tackle. That is, that the growing complexity of digital
circuits make it very difficult for designers to model the functional intent of the
system and implement it using HDL languages and traditional FPGA design
flows.

In following sections, the different types of circuits and very small amount
of coding guidelines are presented. This design methodology together with
coding guidelines are taken from Pong P. Chu’s book “FPGA Prototyping by
VHDL Examples” [3]2. General considerations are taken from [2] and [1].

General Considerations

Inference and Instantiation

As already stated, each RTL construct in HDL code synthesize to a par-
ticular hardware structure. In order to design good and optimized circuits,
it is very important to know what hardware is inferred when writing a par-
ticular code. Another way to determine which particular hardware will be
put in the resulting digital circuit is to instantiate a particular IP core that
wraps a physically existing resource in the FPGA (for example, a DSP block
or BRAM). Inference is preferred when the objective is design flexibility or
design portability; instantiation when seeking to take the greatest advantage
of architecture specific structures and architectural features.

Procedural and Structural Coding

Procedural and structural are two general coding styles:

• Procedural Coding Style: the “behavior” of a circuit is described in se-
quential, top-to-bottom code, similar to the code implemented in proce-
dural languages like C. Much procedural-style code is supported for RTL
synthesis, and does not require a behavioral synthesis tool, and for that
reason this style is usually referred to as behavioral code. In order for
tools to understand top-to-bottom statements, they need to be wrapped
in VHDL processes or Verilog always blocks.

• Structural : the structure of the circuit is explicitly written, including in-
stantiating components and specifying which signals (nets, wires) are

2Chu also has this book in Verilog flavor, see [69]

68

connected to each pin of the component. It is similar to specifying
schematic connections explicitly in text.

It is possible for users to mix structural and procedural coding styles in
the same VHDL or Verilog source file. Procedural style code is easier to read,
however, structural style code is typically used for instantiating technology-
specific library cells (such as I/O pads), memory cells, third-party IP blocks,
and lower-levels of the hierarchy from the HDL code. Structural code is also
used to explicitly show parallel sections.

Types of circuits

Combinatorial circuits

A combinatorial circuit is a circuit in which the output is a function of
the input only. Combinatorial circuits are important because they are the
building blocks of higher-level architectures. They include logical operators,
arithmetic operators such as adders or multipliers, and relational operators
such as comparators. Also, routing circuits made with multiplexers, such as
priority or parallel routing. Guidelines for coding this combinatorial circuits
can be found in chapter 3 of [3].

Sequential circuits

A sequential circuit is a circuit with memory, which forms the internal
state of the circuit. Unlike a combinatorial circuit, in which the output is a
function of input only, the output of a sequential circuit is a function of the
input and the internal state.

Synchronous Design is the most commonly used practice in designing a
sequential circuit. In this method, all storage elements are controlled (i.e.,
synchronized) by a global clock signal and the data is sampled and stored at
the rising or falling edge of the clock signal. It allows designers to separate the
storage components from the circuit and greatly simplifies the development
process. It also simplifies design reuse, and timing simulation, static timing
analysis and constraints.

Figure 3.13: Block diagram of a synchronous system (figure taken from [3])

69

Of course, different clocks may be used. In that case, it may be necessary
to synchronize at the clock domain interfaces, which is usually a place for
headaches. The interfacing function depends on the application. For data
exchange, FIFOs between the clock domains may be used. For signals, a
common method is to use two or more successive flip-flops clocked with the
frequency of the clock domain the signals are transitioning into.

The block diagram of a synchronous system is shown in Figure 3.13 . It
consists of:

• State register : a collection of flip-flops controlled by the same clock sig-
nal.

• Next-state logic: combinatorial logic that uses the external input and
internal state (i.e., the output of register) to determine the new value of
the state register.

• Output logic: combinatorial logic that generates the output signal.

The code development follows the basic block diagram in Figure 3.13. The
key is to separate the memory component (i.e., the register) from the system.
Once the register is isolated, the remaining portion is a pure combinatorial
circuit, and the coding and analysis schemes used for combinatorial circuits can
be applied. While this approach may make the code a bit more cumbersome at
times, it helps to better visualize the circuit architecture and avoid unintended
memory and subtle mistakes.

Based on the characteristics of the next-state logic, sequential circuits can
be divided into three categories:

• Regular sequential circuit. The state transitions in the circuit exhibit a
“regular” pattern, as in a counter or shift register. The next-state logic
is constructed primarily by a predesigned, “regular” component, such as
an incrementor or shifter.

• Finite State Machine - FSM. The system transits among a finite number
of internal states. The transitions depend on the current state and exter-
nal input. Unlike a regular sequential circuit, the state transitions of an
FSM do not exhibit a simple, repetitive pattern. Its next-state logic is
usually constructed from scratch and is sometimes known as “random”
logic.

• FSMD. The circuit consists of a regular sequential circuit and an FSM.
The two parts are known as a data-path and a control-path, and the
complete circuit is known as an FSMD (FSM with data path). This
type of circuit is used to implement an algorithm represented by register-
transfer (RT) method, which describes system operation by a sequence
of data transfers and manipulations among registers.

70

Sequential Circuits coding guidelines

In all the cases, the state register needs to be coded as a process. The
process has the clock and reset signals in the activation list, both signals
necessary to synthesize memory.

The rest of the coding guidelines depend on the type of sequential circuit.

• Regular sequential circuits: the next-state and output logic can be coded
as combinatorial circuits.

• FSMs: the next-state logic is coded as a process that has as activation
signals the previous state and the input signals. Inside the process, a
case statement defines which is the next state for each current state
and inputs- i.e, it codes the FSM. The output logic is also coded as
process that defines the output for each state. The activation signals
of this output logic process depend on the type of FSM. In Moore type
machines, the output depends only on the state and hence the activation
signal only includes the state. In the case of Mealy machines, it depends
both on the state and the input signals; and hence both are in the process’
activation list.

• FSMDs: this can be coded following the block diagram in 3.14. One
process codes the state and data path registers, having clock and reset as
activation signals. Another processes codes the control path (next state
logic + control signals), having as activation signals the state register
and input signals. A third process codes the output signals. Finally, the
data path can be coded as a combinatorial circuit.

Of course, other coding patterns can be applied to code this circuits. De-
tails con be found in chapter 4,5 and 6 of [3].

Optimizations

To close the HDL Capture section, a few words on optimization techniques.
When talking of optimizations in FPGA design, there are several conflicting
goals:

• Performance: The logic must run at a required rate. Performance can
be measured in several ways, such as throughput and latency (usually
conflicting among them). Clock rate is usually used as a measure of
performance.

• Power/energy: The chip must often run within an energy or power bud-
get. Energy consumption is clearly critical in battery-powered systems.

• Area: Area occupancy is usually related to the cost of the chip that will
host the design.

71

Figure 3.14: Block Diagram of a Data Path - Controller Architecture (figure taken
from [3])

Although constraints for synthesis tools are useful to optimize designs in
these vectors, in this type of HDL coding, optimizations are mostly given by
the general architecture of the system and the designed hardware architecture
of each module. There are many techniques to optimize designs in each of
the mentioned topics. For example, pipelining is a very usual approach to
increase throughput. Resource sharing is very common for reducing area- but
it usually decreases throughout. On the contrary, replicating hardware mod-
ules can be used to increase throughput and decrease latency, but of course,
increasing area. Although almost all FPGA design books include some sec-
tion for optimizations, an excellent book on detailed optimizations techniques
is Steve Kilts’ “Advanced FPGA Design. Architecture, Implementation and
Optimization” [5].

The above are usual performance goals taking into account only the design
itself. However, at least two other goals must be taken into account:

• Design time: It cannot take forever to design and optimize the system.
This means that actions need to be taken to reduce design and verifica-
tion time.

• Design cost: Of course, design time affects costs. Another important cost
is tools: in FPGA design there are many very interesting tools that can

72

help with reducing design and verification time. However, many times
this tools are prohibitively expensive3.

Logic synthesis

Logical synthesis is the process of translating an HDL language design descrip-
tion into a pure RTL design description. The synthesis process occurs as a
sequence of stages. The first stage is the parsing of the HDL code for syntax
errors. When the code is verified to be syntactically correct, the synthesis tool
begins the process of translating the design into an RTL description (registers,
Boolean equations, clocks and interconnecting signals). The output of the syn-
thesis process is a netlist file, which is used as an input to the place-and-route
tools discussed in following subsection.

Physical implementation

The Physical process consists of three smaller processes: translate, map, and
place and route. The translate process merges multiple design files to a single
netlist. The map process, which is generally known as technology mapping,
maps the generic gates in the netlist to FPGAs logic cells and IOBs. The
place and route process, which is generally known as placement and routing,
derives the physical layout inside the FPGA chip. It places the cells in physical
locations and determines the routes to connect various signals. Static timing
analysis, which determines various timing parameters, such as maximal prop-
agation delay and maximal clock frequency, is performed at the end of the
implementation process.

Although the process of translating code to gates is a fairly mature tech-
nology; choosing the gates, their placement and interconnect routing in order
to meet the specified design timing requirements and area goals remains a
significant challenge. Hence, physical implementation is an iterative process:
different placement and interconnections are tried until the timing constraints
are met, while the I/O and area constraints are followed. Of course, this may
not happen, and design changes may be needed to achieve the desired timing
constraints.

Generate and download the programming file

In this process, a configuration file is generated according to the final netlist.
This file is downloaded to an FPGA device serially to configure the logic cells
and switches. The physical circuit can be verified accordingly.

3This is much worse in ASIC design.

73

Simulation and Functional Verification

Two primary methods are used for FPGA design validation: simulation and
board-level testing. Board-level testing is implemented after the design has
been placed and routed and is performed on the target hardware platform.
Although board-level testing is an effective design test and debug approach,
validating a design in the lab at the board level all at once without significant
block-level testing is only practical for small to medium designs with limited
complexity. Simulation plays a critical role in the FPGA design verification
process, especially for rapid system development efforts.

The primary benefit simulation provides is the ability to begin validation
of design functionality at the earliest phases of the project, independent of the
availability of a hardware target platform. Simulation can begin before the
synthesis process and can continue throughout all the implementation phases
of the FPGA design flow until a hardware target platform becomes available.

There are three main stages of simulation. Each of these stages is related
to the phases of implementation relative to the synthesis process. The typical
terms associated with each simulation stage are behavioral, functional and
timing. A short description of each stage is:

• Behavioral : Used to validate the behavior of the HDL code. Performed
before the synthesis stage. May not be synthesizable to hardware.

• Functional : Used to validate that the functionality of the design blocks
meet functional design block requirements. Performed after synthesis
stage. Timing analysis is based on assumed gate and routing delays
since the design has not yet been placed or routed

• Timing : Used to validate the functionality, timing and performance of
the design. Performed after design place and route. Based on actual
back-annotated timing delays and thus more accurate than functional
simulation.

For rapid system prototyping applications, the use of behavioral simu-
lation coupled with timing and board level validation is typically sufficient.
Although functional simulation is not commonly used, there are cases where
it can be beneficial to implement. The main idea in simulation is to have a
testbench that stimulates the design, captures the output, and compares it to
the expected outputs. HDL languages supports testbench creation to some
extent. However, special languages have appeared for full-featured testbench
environments, such as SystemVerilog [4], and also C++ environments have
been proposed [70].

Fig. 3.15 shows what a full-feature functional verification environment
diagram might look like.

74

Figure 3.15: Block diagram of full testbench- DUT stands for Design Under Test
(figure taken from [4]).

There are many books covering functional verification, including topics
such as assertion driven simulation, functional coverage, random stimuli gen-
eration or formal techniques. This is a vast area of FPGA-based design. A
more detailed discussion of this topics exceeds the aim of this thesis, that is
focused in the design methodology more than the functional verification of
designs. However, this is an area of much recent development, and a path
for future research: the inclusion of functional verification methodologies and
frameworks with the proposed co-design methodology. Some important books
cover SystemVerilog for Verification [4], Open Verification Methodology [71]
or C++ based verification [70].

Constraints

Constraints are used to influence the FPGA design implementation tools in-
cluding the synthesizer, and place-and-route tools. They allow the design team
to specify the design performance requirements and guide the tools toward
meeting those requirements. The implementation tools prioritize their actions
based on the optimization levels of synthesis, specified timing, assignment of
pins, and grouping of logic provided to the tools by the design team. The four
primary types of constraints include synthesis, I/O, timing and area/location
constraints.

Synthesis constraints influence the details of how the synthesis of HDL code
to RTL occurs. There are a range of synthesis constraints and their context,
format and use typically vary between different tools.

I/O constraints (also commonly referred to as pin assignment), are used

75

to assign a signal to a specific I/O (pin) or I/O bank. These constraints may
also be used to specify the user-configurable I/O characteristics for individual
IOB.

Timing constraints are used to specify the timing characteristics of the
design. Timing constraints may affect all internal timing interconnections,
delays through logic and LUTs and between flip-flops or registers. Timing
constraints can be either global or path-specific.

Area constraints are used to map specific circuitry to a range of resources
within the FPGA. Location constraints specify the location either relative to
another design element or to a specific fixed resource within the FPGA.

3.3.3 FPGA flows comparison

The concepts and ideas of the previous section where taken from several books.
These books present design flows that are subsets of the presented design flow
with different names for the same phases. In this section, we shortly show the
design flow presented in each book and compare it to the one presented in this
thesis.

For this, we will show the diagram for the design flow of each book, and
mark in red the swimlines (constraints, implementation, simulation) and in
blue the stages of the flow we presented in the preceding section.

The Design flow presented in Chu’s book is very similar (see Fig. 3.16).
It includes constraints, implementation and simulation. It describes in detail
only the implementation stage, which is reasonable since the book is focused in
coding guidelines and patterns for good design in VHDL. It is also interesting
to note that the HDL Capture stage is called RTL code. This is because the
design patterns presented in the book are mainly at the RTL level of HDL.
Although it uses processes and “high-level” VHDL constructs, in the presented
pattern designs, the timing is completely defined: it is an RTL design.

The Design flow presented in Maxfield’s book is a simplified HDL based
flow (see Fig. 3.17). Since this book is mostly an overview on many aspects
of FPGA based design, there are no detailed design flows. Moreover, it is
interesting to note that here again, the HDL capture phase is called RTL.

The design flow presented in Kilts’ book includes all the stages presented
in this chapter (see Fig. 3.18). This book is focused on detailed design, coding
and implementation for optimized performance. The chapters on the book are
organized following this design flow. Moreover, although the constraints are
not explicitly described in the diagram, they are an important topic on the
chapters describing Synthesis Optimization and Place and Route optimization.

This design flow presented in Cofer’s book is focused in the implementation

76

Figure 3.16: Design flow presented in Chu’s book [3] (see page 16 of the book)

Figure 3.17: Design flow presented in Maxfield’s book [1] (see page 159 of the book)

77

Figure 3.18: Design flow presented in Kilts’s book [5] (see page 9 of the book)

phase (see Fig.3.19), although a description of each phase is provided in the
book. Moreover, although it is not represented in the diagram, the book
includes a complete chapter on Optimizations and Constraints, and also on
Simulation.

Figure 3.20 shows the design flow found in the book by Wayne Wolf. This
is a very basic flow that does not really reflect the amount of information in
the book. Chapter 4 of the book focuses on Combinatorial circuit design, and
Chapter 5 on Sequential circuits including FSM. In Chapter 6 the Data-Path-
Controller architecture is presented.

As can be seen, each book names things and partition stages a little differ-
ent. Moreover, the focus of each book makes the flows more or less detailed

78

Figure 3.19: Design flow for the Implementation stage in Cofer’s book [2] (see page
121 of the book)

in different sections of the flow. However, this comparison comes to show
that the described design flow in this section extracts the important phases in
FPGA-based Design.

3.4 Case Study: Real time hot spot detection

using FPGA

In this section, we apply the aforementioned FPGA design flow to a remote
sensing case study that requires on board, real time processing with low power
consumption. As already stated, for many embedded digital signal processing
applications, today’s general purpose microprocessors are not longer able to
handle them [72]. FPGAs offer a highly parallel hardware architecture with

79

Figure 3.20: Design flow in Wolf’s book [6] (see page 414 of the book)

low power consumption that is an alternative for such digital signal processing
implementations.

3.4.1 Requirements and Specification

The problem consists on processing video captured by an IR camera on an
Unmanned Aerial Vehicle (UAV) in real-time. The aim of the algorithm is to
identify fire embers (that is, hotspots) in the captured images. The location
and characteristics of the detected hotspots are then transmitted by the UAV
to a firemen team fighting a forest fire. This solution was developed for an
UAV System of the Department of Computer Architecture, Escola Politècnica
Superior de Castelldefels, Universitat Politècnica de Catalunya [73].

The UAV has a network centric architecture, in which all sensors and dif-
ferent processing units are connected to an Ethernet network. It is required
that the FPGA solution is inserted between the IR camera and the network.
It should take the analogical output of the IR camera, process the frames in
real time and return the location and spatial configuration of the found hot
spots (if any) in UDP packets.

From each hotspot, the needed information is the bounding box that con-
tains the complete hotspot and the hotspot’s centroid. In geometry, the cen-
troid or geometric center of a two-dimensional shape X is the intersection of
all straight lines that divide X into two parts of equal moment about the line.

80

Informally, it is the “average” (arithmetic mean) of all points of X. For a finite
set of k points {p1,p2, ...,pk} where pi = (xi, yi), the centroid is given by
equation 3.1.

C =

k∑
i=1

pi

k
=

k∑

i=1
xi

k
k∑

i=1
yi

k

 (3.1)

To calculate the enclosing square, it is sufficient to obtain the maximum
and minimum X and Y of the pixels that are in the hotspot. Similarly, to
calculate the centroid, it is sufficient to calculate the amount of pixels k that
are in the hotspot, and sum of their positions in X and in Y. The division to
calculate the average can be calculated in the off-chip processor. Hence, the
needed information from each hotspot is {maxX, minX, maxY, minY, sumX, sumY,
#pixels}.

The most important constraint for the solution is that the image needs to
be processed in real time, with the minimum possible delay between the acqui-
sition of the last pixel and the transmission of the results. It is also desirable
that the whole application works at the slowest possible clock frequency, to
minimize the FPGA’s power consumption.

Segmentation algorithm

The algorithm needs to segment the image in hot and cold regions, storing
the location and spatial configuration of the found hot regions (i.e, hotspots).
There are several possible algorithms to do this. However, we are looking for
a solution that groups the pixels in hotspots and updates the stored hotspot’s
data as the image is being captured (if possible). Not every algorithm can be
implemented in such a manner. In order to process the image as it is being
captured, the algorithm must use only the data of the pixels previous to the
one that is being processed.

The IR camera’s output video is first digitalized, the temperature pixel is
extracted and then classified as a hot o cold pixel (i.e, if the pixel belongs to
a hotspot or not). This is done using a parametrizable threshold T. If the
current pixel- say pixel(m,n)- is hot, the segmentation algorithm checks the
adjacent pixels. These are the neighbors of the current pixel that have already
been acquired, i.e, the pixel in the same column but previous row- pixel(m-
1,n)- and the one in the same row and previous column- pixel(m,n-1). For this,
the algorithm uses a list L that stores to which hotspot (if any) the previous
line of pixels belong to (see Fig. 3.21).

If none of the two adjacent pixels belong to hotspots, then the current pixel

81

Figure 3.21: Line of previous pixels stored in L.

is the beginning of a new hotspot. If only one belongs to a hotspot, or both
belong to the same hotspot, then the current pixel belongs to that hotspot.
Finally, if both adjacent pixels are hot but belong to different hotspots, then
the current pixel unifies those two previously discovered hotspots. In each
step, the information of the current pixel- pixel(m,n)- is added to line L, and
the information of the pixel in the same column but previous row- pixel(m-
1,n)- is discarded, since it will not be used again. The algorithm also updates
the stored hotspot’s data according to the situation. The algorithm’s pseudo
code is shown in Listing 1

With this algorithm, there is no need for extra memory to store parts or the
complete image, and the total processing delay is independent on the image
size. Moreover, it allows an implementation that processes the image as it is
being captured.

3.4.2 Architecture

In this section, architecture design for the solution is addressed. As explained
in section 3.3.1, the main concept is hierarchical design. Figure 3.22 shows the
hardware platform for the design. The board is connected to the IR camera
and the Router. Besides the FPGA, it includes a SAA7113 video digitalizer
[74] and an Ethernet physical driver.

Figure 3.22: Hardware platform including the video digitalizer, the FPGA and
Ethernet physical driver.

82

Algorithm 1 Segmentation Algorithm.

function Segment Image(pixel(m,n), line L, threshold T)
if pixel(m,n) < T then

mark in the line L that pixel(m,n) does not belong to a hotspot.
end if
if pixel(m,n) ≥ T then

if pixel(m-1,n) and pixel(m,n-1) do not belong to hotspots then
create a new hotspot for pixel(m,n)
mark pixel(m,n) in the line L as belonging to the new hotspot

end if
if (pixel(m-1,n) or pixel(m,n-1) ∈ hot spot x) and neither are in other

hotspot then
add pixel(m,n) to hot spot x in the memory
mark pixel(m,n) in line L as belonging to hot spot x

end if
if (pixel(m-1,n) ∈ hot spot x & pixel(m, n-1) ∈ hot spot y &

id(hot spot x) < id(hot spot y)) then
add hot spot y data to hot spot x in the memory
add pixel(m,n) to hot spot x in the memory
mark hot spot y as invalid in the memory
mark pixel(m,n) in line L as belonging to hot spot x
for each pixel in line L do

if pixel ∈ hot spot y then
mark pixel as belonging to hot spot x

end if
end for

end if
end if

end function

83

From the description of the algorithm, three top hierarchy modules are
clear. One to configure the digitalizer of the IR camera and to create the
raw data that the segmentation algorithm needs from the camera’s digitalized
output. The second one to perform the segmentation algorithm described in
Listing 1. And the third one to transmit the resulting hotspots in each image
through UDP. Fig. 3.23 shows this global view of the architecture.

Figure 3.23: First view of the hierarchichal design

At this stage, it is important to define which are the interfaces for these
modules, and some general constraints and definitions that will affect the next
stages. The amount of design details vary, and the final design is, as already
stated, an iterative work between architecture, implementation, testing and
timing analysis. However, this iterative process cannot be completely pictured
in a few pages, hence it is important to keep in mind that some of the detail
explained in the Architecture phase was actually achieved after some iterations.

Camera module

As already stated, the camera module needs to perform two functions: to con-
figure de SAA7113 digitalizer, and to create the raw data for the segmentation
algorithm from the digitalized video.

Digitalizer Configuration

The SAA7113 digitalizer is configured using a I2C bus. Through this bus,
a set of internal registers of the digitalizer need to be set. Hence, this config-
uration module needs to drive the I2C bus pins- including the 200 Khz clock-,
the digitalizer’s chip enable and also a pin to inform that the digitalizer has
been configured and it is ready for use.

The chip can be configured to transmit in several video codings. In this
application, we use it to transmit video coded in ITU-R BT 656 YUV 4:2:2
format at the standard’s clock of 27 Mhz. In this configuration, the digitalizer
sends the Y component coded in 8 bits in one clock, and the UV component
in another clock. Hence, it takes two clocks to transmit the information of one
pixel.

Raw Generator

84

The first thing to think when architecting this submodule is: what infor-
mation needs to be extracted from the YUV digitalized image data for the
segmentation algorithm to work? For one, the IR level information from the
pixel to classify it as hot or cold. This information is in the Y component
of the video stream. Also, the (X,Y) position of the current pixel is needed,
since the algorithm needs to calculate their maximums and minimums, and
their sum. The (X,Y) position needs to be generated from the horizontal and
vertical synchronization signals that the SAA7113 exports. Finally, a frame
signal is needed to know when the frame is over and the information of a new
frame starts.

A requirement of the application is that it runs at the slowest possible clock
in order to consume less power. A possible solution is that the application
runs at the digitalizer’s clock frequency, i.e. 27 Mhz. This imposes the need
for the segmentation algorithm to process each pixel as it is being acquired,
that is, with a throughput of one pixel every two clocks. This restriction will
impact the design of the segmentation module further along the way. Using
the digitalizer’s clock also simplifies the integration between the camera and
the proposed solution. Hence, the raw generator module also generates the
clock signal for the rest of the application, propagating the clock signal from
the SAA7113. It also generates a sync y signal that identifies the rising edge
of the clock at which the pixel data is changed.

It is important to note that the digitalizer and camera used is abstracted
from the rest of the application by the Raw Generator. They can be completely
changed and the rest of the application will continue to work, provided the
Raw Generator module continues to produce the same control signals; i.e,
that it still produces one (X,Y) and pixel data every two clocks and correctly
generate the frame and sync y signals.

Figure 3.24 shows the architecture of the Camera Module.

Figure 3.24: Camera control module architecture

85

Table 3.1: Raw processing output signals according to the situation.

the pixel... id1 id2 unifHS newHS
..is not hot 0 0 0 0
..starts new hotspot newId 0 0 1
..is in hotspot with idA idA 0 0 0
..unifies hotspots with idA & idB;

idA idB 1 0
and idA<idB

Image Segmentation module

This module implements the segmentation algorithm. In order to partition
this module, it is important to keep in mind that it needs to process the pixel
as it is being acquired.

A way to start is to think about the memory needed: the list L of previ-
ous pixels needs to be stored, and also the information of the previously found
hotspots. L is relatively small, and can be stored in flip-flops, but the hotspots
will need a BlockRAM. Since the list L needs to be read and written, and so
does the hotspot memory, it is not possible to perform the whole processing
at pixel rate (i.e, two clocks). However, the solution can be pipelined: a first
stage can process the pixel using list L to determine to which hotspot it be-
longs to; and a second stage can make the necessary changes to the hotspot
information in memory. At least another module is needed: the memory mod-
ule for the hotspots. A first approximation to the Image Segmentation module
design includes three sub-modules: Raw Processing, HotSpot Reconstructor
and HotSpot Memory.

Raw processing

The Raw Processing module needs to determine if the current pixel is hot
or not. If the pixel is hot, the module decides if it is the beginning of a new
hotspot, if it belongs to a previously discovered hotspot or if it unifies two
previously discovered hotspots. For this, the only stored information it needs
is the list L that stores to which hotspot the previous line of pixels belong to.

In Fig. 3.25, the needed inputs and the produced outputs of this module
can be seen. Important things to note is that the IR data from the pixel is
not propagated to the next module, since it is not needed any more. The
outputs include two control signals: new hotspot and unify hotspot (newHS
and unifyHS in the figure). It also includes two hotspot ids (id1 and id2).
In Table 3.1, the values of these output signals according to the situation are
shown.

The module needs to update the list L according to the processing results

86

and generate the corresponding output signals at pixel rate (i.e, in 2 clocks).
This means the output signals from the current pixel are stable for two clocks.
For this, it uses the sync y signal.

Hotspot Reconstructor and Hotspot Memory

As discussed in section 3.4.1, the information stored for each hotspot is
{maxX, minX, maxY, minY, sumX, sumY, #pixels}. The Hotspot Reconstructor
module is in charge of updating the appropriate hotspot with the information
from the current pixel, as shown in the algorithm in Listing 1. For example,
adding one to the amount of pixels, checking if the X component is bigger
than the stored maxX, etc. For this, it uses the X,Y position of the pixel and
the control signals produced by the Raw Processing module. It also has to
access the Hotspot Memory, retrieve the corresponding hotspot(s), recalculate
the data and write the results back.

Adding the information of a new pixel to a particular hotspot or creating a
new hotspot is rather straightforward. Unifying two hotspot is a little trickier.
To start, two hotspots need to be accessed. Hence, the both ports of the
Hotspot Memory are used: one is accessed with id1 and the other with id2.
The information of both hotspots and the current pixel needs to be merged.
Since the stored information are maximums, minimums and sums, this is easily
performed. For example, the equations for the X coordinate are:

maxXnew = max(maxXid1,maxXid2, X)

minXnew = min(minXid1,minXid2, X)

sumXnew = sumXid1 + sumXid2 +X

The unified hotspot data is always written to the id1 hotspot. However,
the hotspot with id2 is also overwritten to state that this hotspot is no longer
valid. In this manner, it will not get transmitted as a valid hotspot when the
frame is completely processed.

Finally, it is important to remember that all this processing needs to be
performed at pixel rate. Luckily, pixel rate means two clock cycles. Hence,
during the first clock the hotspots can be read from memory and the data can
be merged, and the results can be written during the second clock. Of course,
this requires that the logic to merge the data is fast enough to be done in one
clock, but since the clock is rather slow (27Mhz) and the logic is relatively
simple, this restriction is achieved.

Fig. 3.25 shows this initial architecture for image segmentation.

Final modifications

87

Figure 3.25: Initial Architecture for the Image Segmentation module. The clock is
the 27 Mhz digitalizer clock. Both the clock and reset signals are distributed to all
the submodules, although this is not shown in the figure for simplicity.

To process one frame and not transmit the results, this architecture would
be sufficient. However, the application is required to process a video stream.
Hence, the results of the previous frame need to be transmitted as the current
frame is processed. As both ports of the Hotspot Memory are being used,
the transmission module cannot access that memory to retrieve the data from
the previous frame. A solution is to use a double buffer: to have two hotspot
memories, one for the current frame and another for the previous frame. For
this to work, the hotspot reconstructor needs to switch the memory it fills in
each frame. Moreover, the logic that will take out the hotspots’ information
for transmission also needs to switch memories in each frame. Hence, we
have three new modules: an extra Hotspot Memory, the Switching Box and a
Hotspot Retriever for transmission. The Switching Box connects the memories
to the appropriate modules whenever the newFrame signal becomes active.

There is another problem: the clock at which the image segmentation is
done (27 Mhz) is quite different from the UDP transmission clock (100 Mhz).
Hence, there is a clock domain transition at this spot. For this, a FIFO can
be used.

The Hotspot Retriever generates all the possible Hotspots ids, accessing
the memory in an ordered manner. If the hotspot is valid, it adds the frame
id (i.e, to which frame this hotspot belongs to), and puts the information in
the FIFO at the 27Mhz clock rate. It also overwrites the read hotspot in
memory with hotspot initialization values (i.e, all zeros). When the newFrame
signal is asserted, the module increments the frame id and resets the hotspot
id generator. The data FIFO that is filled by this module at 27 Mhz will be
read by the UDP transmission module at it’s clock rate, completing the clock
domain transition.

Fig. 3.26 shows the final architecture of the image segmentation module.

88

Figure 3.26: Final Architecture for the Image Segmentation module.

Net Control module

The Net Control module has two submodules: the FIFO from where it takes
the hotspot data, and a net transmission module that communicates with
the physical Ethernet driver, and generates Ethernet, IP and UDP packets
with the hotspot information and control for a host application in a remote
computer. Hence, this module together with the Physical Ethernet Driver
implement a simplified but complete OSI model: from the Application layer
to the Physical one.

Fig. 3.27 shows the architecture of the Net Control module.

3.4.3 Implementation

In this subsection we describe the FPGA implementation, simulation and con-
straints. The implementation description is focused in the Image Segmentation
module, particularly the Raw Processing and the Hotspot Reconstructor mod-
ules that are the core of the solution. For the rest of the submodules, only a
short description is provided, commenting which of the HDL capture patterns
described in section 3.3.2 were used.

89

Figure 3.27: Architecture of the Net Control module.

Camera Module

In this module, the Digitalizer Configuration is implemented using two FSM
sequential circuits. One is an “outer loop” that transits through the several
steps of the configuration (idle, reset, configure, etc). The other FSM performs
the I2C bus protocol, and using this protocol sends the SAA7113 registers
following the chip’s data-sheet to obtain the desired video coding.

The Raw Generator module is implemented with several processes that
generate each output signal from the digitalizer’s output. This transformation
are rather straightforward.

Image Segmentation Module

Raw Processing module

The core of the Raw Processing module is the implementation of L such
as to calculate which hotspot the current pixel belongs to and update all the
list at the pixel rate. For this purpose, L is implemented as a stack: the top
of the stack stores the id of the hotspot that pixel(m,n-1) belongs to, and the
bottom of the stack stores the id of the hotspot pixel(m-1,n) belongs to. This
two special records can be accessed to obtain the hotspot ids needed in the
algorithm. The remaining records in L hold the information of the line of
pixels between pixel(m-1,n) and pixel(m,n-1), i.e, the previous line of pixels.
At pixel rate, the hotspot id corresponding to the new pixel is pushed onto the
stack, all the middle records are updated if necessary and moved to the next
stack position, and the bottom record (i.e, the hotspot id of pixel(m-1,n)) is
discarded. Fig. 3.28 shows this stack implementation of L.

90

Figure 3.28: Line L of previous pixels implemented as a stack.

When a pixel unifies two previously discovered hotspots, say hot spot y
and hot spot x, hot spot y is marked as invalid and all the pixels belonging
to that hotspot are added to hot spot x. In that case, all records in the stack
have to be accessed, compared with the id of hot spot y and changed to the
id of hot spot x (if needed) in one pixel cycle. To accomplish this, each record
of the stack has a comparator and a multiplexer. The result of comparing the
record’s id, say idA, with the id of hot spot y enables the multiplexer that
either propagates idA or the id of hot spot x to the next record as needed.
The implementation of each record in list L is shown in Fig. 3.29.

L is implemented as a regular sequential circuit: at pixel rate, the data is
transmitted from one record to the next as previously indicated. The pixel rate
is generated using the clock and the sync y signal as an enable. The logic to
create the output signals (unifyHS, newHS, id1, id2), that are also the signals
used in list L’s multiplexing logic, is completely combinatorial. At pixel rate,
the ids of the top and bottom stack records together with the input signals are

91

Figure 3.29: Detailed implementation of the stack L in the Raw Processing module,
including the general middle records and the special top and bottom records of the
stack.

read, the combinatorial logic creates the control signals appropriate for this
pixel, and when the next pixel arrives, the records in list L are updated and
the output signals are already stable. Finally, to generate a newId when a
pixel starts a new hotspot, a simple counter is used. Both the list L and the
id generator counter are reset to zero when a new frame starts (i.e, when the
newFrame input signal is driven high).

Hotspot Reconstructor module

As already described in the architecture section, this submodule runs at
clock frequency. It uses the control signals generated by the previous module,
which are stable for two clock cycles. It reads the information of the hotspots
from memory and merges it with the pixel info during the first clock cycle,
and writes the results back to the memory during the second clock cycle. The
implementation of this module is shown in Fig. 3.30 and Fig. 3.31.

Switching Box

92

Figure 3.30: HotSpot Reconstructor module.

Figure 3.31: Detail of the logic for the maximum calculation in the hotSpot Recon-
structor Module

This module is implemented as a combinatorial circuit using several multi-

93

plexers. The control signal of the multiplexer is a frame signal that is toggled
every time that the newFrame signal is asserted. This successfully switches
the memories, reconstructor and retriever output and input signals.

Hotspot Memory

This module is implemented using a BRAM ipcore instantiation, and cre-
ating a combinatorial wrapper that maps the module’s inputs and outputs
to the particular BRAM ipcore interface. The instantiated ipcore is Xilinx’s
LogicCore Dual-Port Block Memory Core v6.3 [75].

Hotspot Retriever

This module is implemented with an FSM. It needs to follow several steps
to retrieve the data from the Hotspot Memory and write it in the FIFO (con-
trol implemented with a FSM). It also needs to transform the hotspot data,
formatting it in a particular way and adding frame information.

Net Control Module

FIFO

The FIFO module is implemented by instantiating a FIFO ipcore, and
creating a combinatorial wrapper that maps the module’s inputs and outputs
to the particular ipcore interface. The instantiated ipcore is Xilinx’s LogicCore
FIFO Generator v4.3 [76]. This core is actually a particular wrapper for a
BRAM.

UDP packet Generator

This is implemented using several FSMs. It needs to follow several steps
to retrieve the data from the FIFO, encapsulate it in the several packet layers,
and drive the Ethernet physical signals so that the driver can actually send
the data to the Router.

To configure and access the Ethernet Physical Driver, a wrapper ipcore
provided by Xilinx is also used. This wrapper file instantiates the full Virtex-4
FX Ethernet MAC (EMAC) primitive.

Constraints, Logic Synthesis and Physical Implementation

The tool used for logic synthesis and physical implementation is the Xilinx
ISE Webpack 10.1, with default settings for all the involved processes. As can
be seen from previous sections, the core of the design is very much tailored to
a particular hardware implementation. Moreover, the desired clock frequency
is rather slow (27 Mhz). This reduces the importance of using special area or
timing constraints to aid synthesis tools, and hence the default constraints were

94

used. After synthesis and physical implementation, since the timing and area
requirements were met, there was no need to review this decision. Particular
I/O constraints were added to map the FPGA pins for the SAA7113 digitalizer,
the Ethernet driver and clock signals. This constraints are the ones provided
by Avnet, the manufacturer of the particular development board used.

Simulation

The basic verification tool used in this project was Behavioral Simulation.
Each of the submodules described has its own HDL testbench. Some are sim-
ple, and some are quite complex. The submodules were gradually integrated
in the modules, and each module has its own testbench to check for correct
integration of the submodules.

In order to test the Image Segmentation module, a fake camera module
was created that emulates the acquisition of several frames and generates the
appropriate Raw Generator signals. This module uses a memory that stores
the image information. This fake module was key to simulating the complete
Image Segmentation module.

3.4.4 Solution sizing

Area and Memory equations

In order to implement the high parallelism needed to achieve the proposed
real time processing of the image, much space and hardware resources of the
FPGA are used. The area needed for this implementation depends only on the
size of the image and the maximum amount of hotspots that can be found in
each image. In order to make the application suitable for different IR cameras,
those parameters can be easily configured.

There are two modules in the implementation that are resource consuming:
the Raw Processing module and the Hotspot Memory module. Since the de-
sign of these modules is tailored, equations to estimate area and Block RAM
consumption can be derived.

The Raw Processing module implements the list L that stores the hotspot
id for each pixel in the previous line, as explained in subsection 3.4.3. In terms
of FPGA area, the list has im width records. Each record is wide enough to
store a hotspot id, that is log(max hotspot amount) bits, and has extra logic
needed for the hotspot unifying process. The area equations is as follows:

95

area = im width× [

log(max hotspot amount)× (1FF + 1Mux) +

1comp of log(max hotspot amount) bits]

The Hotspot Memory module stores the information of each hotspot found
in the image, that is, the memory has max hotspot amount records. As already
explained, each record stores the following information: maxX, minX, sumX,
maxY, minY, sumY, #pixels. Moreover, there are two memory buffers. Hence,
the needed Block RAM equation is as follows:

BRAM = 2×max hotspot amount× [

log(im width) + log(im width) + (2× log(im width)− 1) +

log(im height) + log(im height) + (2× log(im height)− 1) +

log(im width× im height)− 1]

From these equations, it can be seen that the amount of logic cells needed
depend linearly on the image width, while the amount of memory (Block
RAMs) depends linearly on the maximum amount of hotspots to be detected
per frame. The image height is of little importance for area calculations.
With these equations, it is straightforward to calculate the size of the needed
FPGA given the size of the image and a maximum for the amount of hotspots
expected in each frame.

Code Sizing

To have an idea of the size of the project, we present in table 3.2 a listing of the
amount of VHDL module files and lines of code used for the implementation
of each module.

3.4.5 Experiments and Results

The testing environment consists of a PAL-N composed video camera, and
an Avnet development kit with a Xilinx Virtex 4 FX12-10C-ES FPGA, a
SAA7113 video digitalizer and an Ethernet physical driver. The UDP packets
with the resulting hotspots are routed to a PC in order to check the processing
results. A program in the host PC shows the results. In this experimental

96

Table 3.2: Code sizing

Module lines of code VHDL files

Implementation

Top 297 1
Camera 1298 6

Image Segmentation 1573 17
Net Control 1605 6

Total 4773 30

Testing
Testbenches 748 7

Special Modules 344 3
Total 1092 10

Total 5865 40

(a) (b)

Figure 3.32: a hotspot image after classification in hot or cold pixels. b visual rep-
resentation of the results showing the location of the detected hotspot (the centroid
is not shown).

setup, the threshold is set using the board’s Dip Switches. For the Ethernet
transmission, the MAC and IP address are fixed, and to debug purposes, a
switch is implemented to transmit either the original image or the processed
and thresholded image.

From the video camera we process and analyze 50 frames per second, cor-
responding to half video images even and odd, with 512 pixels by 256 lines per
frame. The solution was configured for a 256 maximum amount of hotspots
per frame. In Fig. 3.32 some results are shown.

Area

In table 3.3, area results for the complete solution and the most area consuming
modules are shown.

As all the memories were mapped into block rams, including the UDP
FIFO and the configuration memory for the SAA7113, and the hardware MAC

97

Table 3.3: Area occupied by the complete solution

Complete Sol. Raw Processing Hotspot Memory—
amount % amount % amount %

Slices 4972 90 4492 82 0 0
Slice FF 4510 41 4109 37 0 0
LUTs 8576 78 7478 68 0 0
BRAMs 9 25 0 0 6 17
EMAC 1 100 0 0 0 0

Ethernet included in the Virtex 4 was used, the total area of the application
was 90% of the FPGA slices and 25% of the Block RAMs (9 out of 36).

In particular, the occupied area of the most consuming module- Raw
Processing- was 82% of the FPGA slices. The most memory consuming mod-
ule (Hotspot Memory) consumed 17% of the Block Rams (6 out of 36).

This area corresponds to the size equations presented in subsection 4, and it
means that the entire application fits in the smallest Virtex 4 FPGA available
in the market.

Area equation comparison

In this section, we briefly compare the proposed solution sizing equations
with the synthesis and physical implementation area results.

To start, it is important to note that the Raw Processing module is in fact
the most area consuming module of the application. It can be seen in table
3.3 that this module alone corresponds to 4109/4510 = 91% of the used Flip
Flops and 7478/8576 = 87% of the used LUTs. Hence, the presented area
equation is a good measure of the area that will be needed to implement the
solution for a particular camera and hotspot amount.

Following area equation 3.2, and taking into account that in this case study
im width is 512 and max hotspot amount is 256, the estimated area for the Raw
Processing module is:

area = 512× [log(256)× (1FF + 1Mux) + 1comp of log(256) bits]

= 512× [8× (1FF + 1Mux) + 1comp of 8 bits]

= 4096 FF + 4096 Mux+ 512 comp of 8 bits

In table 3.4, the Macro Statistics for module Raw Processing are shown.

It can be easily seen that the estimated area results are compatible with

98

Table 3.4: Advanced HDL Synthesis Report Macro Statistics for Raw Processing
module

Adders/Subtractors 1
8-bit adder 1
Registers 4104
Flip-Flops 4104
Comparators 514
8-bit comparator equal 512
8-bit comparator greater 1
8-bit comparator less 1

both the Macro Statistics (table 3.4) and the Area consumption results (table
3.3):

• Flip Flops : the equation yields that 4096 FF should be used, the Macro
Statistics assigns 4104 and the area consumption after placement uses
4109.

• Comparators : the equation yields 512 8-bit comparators. The Macro
Statistics actually assigns 512 8-bit equal comparators, that are the ones
taken into account in the equation, i.e, the ones between each register for
the id propagation logic. The other 2 comparators are used in generating
the control signals (e.g, when a pixel unifies two hotspots, the module
selects the hotspot with smaller id, using a less comparator).

• Multiplexers : there are no particular mentions to multiplexers in the
tables.

• Adder : the adder that is in the Macro Statistics corresponds to the newId
generator (in case the pixel starts a new hotspot).

BRAM equation comparison

Looking at the memory requirements, equation 3.2 refers to the BRAM
bits needed in the implementation of both Hotspot Memory modules. Taking
into account that in this case study im width is 512, im height is 256 and
max hotspot amount is 256, the estimated memory bits needed in both Hotspot
Memory modules is:

99

BRAM = 2× 256× [log(512) + log(512) + (2× log(512)− 1) +

log(256) + log(256) + (2× log(256)− 1) + log(512× 256)− 1]

= 2× 256× [9 + 9 + (2× 9− 1) + 8 + 8 + (2× 8− 1) + 17− 1]

= 2× 256× [9 + 9 + (2× 9− 1) + 8 + 8 + (2× 8− 1) + 17− 1]

= 2× 256× 82 = 41984bits

This yields a need for 41984 bits, arranged in two modules, each having
256 records of 82 bits each. So, how many BRAMs are needed to arrange
a module with 256 records of 82 bits? The ports in the Virtex4 BRAM can
be configured in any of three #entries×bits per entry “aspect ratio”: 16K×1,
8K×2, to 512×36. For this application, the best one is 512×36, and since 82
bits per entry are needed and each BRAM accommodates at most 36 bits per
entry, 3 BRAMS will be needed per module. That is exactly the informed
result in the area consumption report, see table 3.3.

Both Hotspot memories use 6 BRAMs, and the complete application uses 9
BRAMs. The remaining 3 BRAMs are occupied as follows: one is used for the
FIFO between the Image Segmentation Module and the Net Control module
to achieve the clock domain interface, and the other two are used to store the
configuration for the SAA7113 and the hardware EMAC.

Power Consumption

Estimate measures of power consumption were done using Xilinx’s XPower
tool. The total estimated power is 260.92 mW, taking into account both the
logic and driving the I/O of the FPGA to communicate both with the digi-
talizer and physical Ethernet driver. Taking into account that the processing
delay of an image is equal to the acquisition time of one pixel, the Energy (i.e,
W×s or Power×Time) can be calculated for any particular image size. In the
case of an image of 512× 256 pixels that is digitalized at a pixel clock of one
pixel every two 27 Mhz clocks, this yields:

acq time = (512× 256)× 2

27M
s = 0.0097s = 9.7ms (3.2)

Hence, the estimated Energy for the processing of one frame is:

E(J) = P × time = 0.26092W × 0.0097s = 0.0025J = 2.5mJ (3.3)

100

Timing

The maximum operation clock obtained was of little over 100 Mhz, which is
enough to work with the 27 Mhz clock output of the SAA7113. In the UAV
application, the mounted IR camera is the FLIR A320, that delivers 320 pixels
by 240 lines images at a rate of 9 fps. Therefore, the results of the tests in
the laboratory experiments indicate that the solution is well suited for the
UAV application. The proposed method successfully segments the image with
a total processing delay equal to the acquisition time of one pixel (that is, at
the video rate). This processing delay time is independent of the image size.

3.5 Conclusions

In this chapter, FPGAs were introduced and a commonly used FPGA design
flow was discussed. The presented design flow has four broad stages: Require-
ments, Architecture, Implementation and Verification. The Implementation
is done capturing the design with Hardware Description Languages and us-
ing synthesis and physical implementation tools to translate HDL to the final
placed and routed design in a particular FPGA chip. Although HDLs support
a Behavioral coding level, most of the design patterns found in books require
that the designer think at RTL level, picturing the intended synthesized hard-
ware while architecting the solution and capturing it in HDL. This also means
that designers keep in mind to what hardware each HDL constructs is syn-
thesized to. Constraints and synthesis tools aid designers in this task, while
powerful simulators and verification languages aid him or her in the verification
phase.

This type of design allows to create extremely tailored, top performance
designs that meet tight real-time constraints with low power consumption and
small occupied area. However, it requires a lot of engineer hours from knowl-
edgeable designers. It is also highly prone to error, and hard to test and verify
even using top notch simulation tools and complex verification environments.

This design flow was applied to a case study to achieve real-time processing
of an IR image for hot spot detection. The algorithm was thought for parallel
implementation, and the design was carefully tailored to achieve the real-time
constraints. In this manner, the proposed method successfully segments the
image with a total processing delay equal to the acquisition time of one pixel
(that is, at the video rate). This processing delay time is independent of the
image size. There is also no need for extra memory to store parts or the
complete image. Since the design was clearly mapped to the implementation,
FPGA area equations could be presented in order to calculate the needed
FPGA size for a particular application. The synthesis area reports confirm
this equations. Finally, as the configuration and communication with the

101

camera is encapsulated in one module, the proposed solution is not tied to
one specific IR camera, and may be used with several IR camera with minor
adjustments.

The tailored design in this case study was necessary to achieve the tight
real-time constraint. However, it also shows the level of detail and care needed
to achieve a working solution, including the development of many testbenches
and particular modules for testing. It shows the difficult, low level and time-
consuming process of the traditional HDL-based design flow.

Clearly, measures to decrease design time by raising the abstraction level
of design and implementation are needed to cope with the ever increasing
complexity of applications. This is addressed in the following chapter.

102

Chapter 4

A new co-design methodology
for processor-centric embedded
systems in FPGAs

Vision-based multiple robot localization

For many applications designing the entire system in FPGAs or hardware is
not the most practical solution. As discussed in the previous chapter, although
the traditional HDL-based design flow is usefull to generate top performance
tailored designs, it comes at the cost of time-consuming, complex and error-
prone development. At the same time, even the most data intensive processing
methods frequently contain sequential sections that are easier implemented in
processors. These hardware/software co-designed solutions try to combine the
best of both software and hardware worlds, making use of the ease of pro-
gramming a processor while designing tailored hardware accelerator modules
for the most time-consuming sections of the application. This not only accel-
erates the resulting system, as compared with the processor solution, but also
allows savings in energy.

The inclusion of processor cores embedded in programmable logic has made
FPGAs an excellent platform for these approaches. During 2011, the two
major FPGA vendors (Xilinx and Altera) announced new chip families that
combine powerful ARM processor cores with low-power programmable logic
[14, 15]. While FPGA vendors have previously produced devices with on-
board processors, the new families are unique in that the ARM processor sys-
tem, rather than the programmable logic, is the center of the chip [16]. This
strengthens the growing trend towards co-designed processor-centric solutions
in FPGA-based chips. According to the 2012 Embedded Market Survey, 37%
of the engineers that do not use FPGAs in their current designs confirmed
that this trend would make them reconsider the matter [13].

103

The novelty of this approach together with its potential in the embed-
ded system world makes academic research in hardware/software co-design in
FPGA-based chips an important field. The main problem to tackle is time-
consuming development. The rising complexity of these applications makes it
difficult for designers to model the functional intent of the system in languages
that are used for implementation, such as C or HDLs (Hardware Description
Languages). Moreover, the traditional HDL-based FPGA design flow is time
consuming and error-prone, as discussed in the previous chapter. Engineers
regard the difficulty in programming FPGAs in HDL as an important rea-
son for not using FPGAs [13]. This creates a great need for methodologies,
languages and tools that reduce development time and complexity by raising
the abstraction level of design and implementation [18] [19]. Advances have
been made in high-level modeling using specific Unified Modeling Language
(UML) profiles to simplify design. Besides, much work is being done in high-
level synthesis tools, which translate constructs in C/C++ to HDL to simplify
hardware implementation. However, there is still a great need for research in
co-design methodologies, languages and tools, so that the recent combination
of powerful processors with programmable logic can reach its full potential.

In this chapter, we present a co-design methodology for processor-centric
embedded systems with hardware acceleration using FPGAs; and apply it to
a global vision algorithm for the localization of multiple robots [77] [78] [24].
The main contributions in this chapter are:

• The proposal of a co-design methodology for the growing field of processor-
centric embedded systems with hardware acceleration in FPGA-based
chips. The goal is to achieve real-time embedded solutions, using hard-
ware acceleration, but achieving development time similar to that of soft-
ware projects. To reduce the development time, well established method-
ologies, techniques and languages from the software domain are applied,
such as Object-Oriented Paradigm design, Unified Modelling Language
and multithreaded programming. Moreover, to reduce hardware coding
effort, semiautomatic C-to-HDL translation tools and methods are used
and compared.

• The proposal of a simple and robust algorithm for multiple robot local-
ization in global vision systems. This algorithm integrates an e-learning
robotic laboratory for distance education that allows students from all
over the world to perform experiments with real robots in an enclosed
arena. Hence, the algorithm was specifically developed to work reliably
24/7 and to detect the robot’s positions and headings even in the pres-
ence of partial occlusions and varying lighting conditions expectable in
a normal classroom.

• The co-designed implementation of this algorithm following the proposed
methodology. This solution processes 1600× 1200 pixel images at a rate

104

of 32 fps with an estimated energy consumption of 17mJ per frame. It
achieves a 16× acceleration and 92% energy saving comparing to the
most optimized embedded software solution. This solution presents -to
the best of our knowledge- the first implementation of such an algorithm
in FPGA-based hardware. It also shows the usefulness of the proposed
methodology for embedded real-time image processing applications.

This chapter is organized as follows. Section 4.1 presents related work on
the methodology proposal and global vision localization for multiple robots.
Section 4.2 provides details of the proposed methodology. Section 4.3 describes
the developed algorithm for multiple robot localization, while section 4.4 de-
scribes how the methodology was applied to this application to obtain an ac-
celerated embedded solution. Section 4.5 presents and discusses acceleration,
area and energy consumption results; finally Section 4.6 provides conclusions.

4.1 Related Work

This section discusses related work on the image processing algorithm, FPGA-
based image processing solutions and the proposed methodology. Multiple
robot localization in global vision systems is discussed in Section 4.1.1; and
FPGA co-designed implementations of image processing applications related
to robot localization are dealt with in Section 4.1.2. Key parts of the pro-
posed co-design methodology -high level modeling and high-level synthesis-
are discussed in Section 4.1.3.

4.1.1 Vision-based multiple robot localization

The most popular localization approaches in mobile robotics are based on
GPS. However, its precision is often insufficient and its signal is not available
indoors. One way to tackle the problem of GPS unavailability is to calculate
a mobile robot position from its sensory measurements and an environment
map [79]. Another solution involves installing localization infrastructure based
on radio waves [36], multicamera systems [37] or similar technology. These al-
ternative global positioning systems are more useful in multirobotic systems,
which require complete information of the environment for efficient coordina-
tion of robot actions. Moreover, they allow the use of small robots unable
to carry heavy sensory and computational equipment and are often used to
provide “ground truth” data in robotic experiments.

A typical application that requires a small-scale positioning system is the
FIRA and RoboCup contests, where teams of small mobile robots compete in
a soccer-like game. The robotic soccer rules require the robots to carry identi-
fication marks with a specific team color. Thus, the robot dress design usually

105

comprises a team color and a combination of individual colors for distinguish-
ing each robot [80, 81, 82]. Since a robotic soccer round takes five minutes, the
playing field illumination is strong, the teams can recalibrate their systems ev-
ery time a goal is scored, and the robots move very fast, the visual localization
approaches of the robotic soccer domain focus on real-time response and pre-
cision rather than robustness to variable lighting conditions. For example, [83]
proposes to diminish the processing time and increase accuracy by localizing
a color patch surrounded by a white border directly in the raw Bayer format
image. The localization methods used in robotic soccer have influenced design
of localization systems used in path and motion planning for robots in indus-
trial settings [84], in teaching activities [85], and also in experimental setups
for multi-agent collaborative tasks, such as platoon formations [86].

Although the setup of the localization system presented in this work is
similar to the ones used in robotic soccer, its main requirement is a reliable
and continuous (24/ 7) operation in lighting conditions of a normal classroom.
It has to deal not only with uneven and variable illumination of the operation
area (see Fig. 4.1) but also with dynamic objects in its field of view. Therefore,
the robot dresses might be partially obstructed or visually connected to some
other object which would cause color segmentation approaches to fail. In
addition, the system does not require such high framerates as in robot soccer,
because the robots move ten times more slowly than a typical soccer robot
of a MIROSOT league. Hence, the system presented in this work is based
on convolution rather than segmentation, because although convolution-based
approaches are more computationally demanding, they are also more robust
to realistic lighting conditions and offer good position estimation precision. To
achieve real-time operation, this convolution-based algorithm needs to process
the image at rates higher than the camera framerate. In this work, the real-
time goal was to process 1600× 1200 pixel images at a rate of 30 fps.

4.1.2 Co-designed FPGA solutions for image processing
algorithms related to robotic localization

FPGAs are evolving as complex hardware/software platforms providing pow-
erful embedded microprocessor cores. This enables several acceleration ap-
proaches to run image and video algorithms in real-time. Modern devices for
image acquisition and visualization can benefit from these acceleration tech-
niques. For this reason, much work can be found in the literature about hard-
ware/software implementations on FPGA for computer vision applications.
In particular, some vision algorithms that can be applied to robot localiza-
tion, such as object tracking [87] or background subtraction [88], have their
co-designed FPGA solutions. Furthermore, FPGA is particularly suitable for
other robotic applications too [89].

106

(a) Light stripes (b) Uneven illumination

Figure 4.1: Lighting conditions on the SyRoTek Arena.

In [87] a video object tracking application is presented. The application is
based on a Sequential Monte Carlo method that uses color segmentation and is
targeted to CPU/FPGA hybrid systems. Based on a multi-threaded program-
ming model, the authors have developed a framework that allows design space
exploration with respect to the hardware/software partitioning. Additionally,
the application can adaptively switch between several partitioning states dur-
ing run-time by means of partial reconfiguration in order to react to changing
input data and performance requirements.

A hardware computing engine to perform background subtraction in video
streams is presented in [88]. The embedded system detects people on low-cost
FPGAs and is able to segment objects in sequences with resolution 768×576
at 50 fps with an estimated power consumption of 5 W.

In [89] authors propose an optical flow-based algorithm that estimates and
compensates ego-motion to allow for object detection from a continuously
moving robot. The system is implemented using a traditional HW/SW co-
design approach on a Virtex-5 FPGA from Xilinx with an embedded PowerPC
Processor. This implementation can process 31 fps at a resolution of 640×480
pixels.

Although the results in these three papers are competitive in flexibility,
performance, and power consumption, as compared with state-of-the-art ar-
ticles, in all of them the designer must design the solution and the hardware
coprocessors in a traditional way. In our work, we propose a co-design method-
ology aimed at reducing development time, and show its applicability to the
acceleration of embedded image processing algorithms. Moreover, to the best
of our knowledge, our work presents the first co-designed FPGA-based solution
to the problem of multiple robot localization in global vision systems. This

107

solution points to the development of “intelligent cameras”: an embedded sys-
tem including the image acquisition and processing on board so that there is
no need to transfer the whole image to other computers.

4.1.3 High level modeling and high level synthesis

High level modeling and high level synthesis are two related areas that pro-
pose to raise the abstraction level of design and implementation in an effort
to reduce the long development times associated with increasingly complex
designs.

UML is a widely used language for system modeling in the software domain.
It is a standard language of the Object Management Group (OMG), which has
given rise to OMG standard UML profiles for SoCs, embedded systems and real
time systems. The most closely related are UML for SoC, SysML and MARTE.
The UML for SoC profile [90] was first introduced in 2009 and mainly defines
structure diagrams through specific SoC stereotypes. SysML[91] is a general
purpose modeling profile for systems engineering applications. It supports the
specification, analysis, design, verification and validation of a broad range of
systems. Although it is useful for embedded system design, it also includes
support for things not specifically designed for this field, such as personnel
or facilities. The UML MARTE (Modeling and Analysis of Real-Time and
Embedded Systems) [92] is the most adequate profile, adding capabilities to
UML for model-driven development of Real Time and Embedded Systems
(RTES). Since its standardization in November 2009, it has become the most
recent industry standard in this field.

Based on these OMG standards, several profile extensions have been pro-
posed to enable automatic code generation and/or extend modeling capabil-
ities to more detailed aspects of embedded system design. For example, ex-
tensions of the MARTE profile for particular sub-domains include proposals
for partial run-time FPGA reconfigurability [93] and for dynamic power man-
agement [94]. Authors of [95] propose a UML-ESL profile for cache usage
analysis. The key to these approaches is not automatic code generation, but
the extension of the modeling language to include the particular sub-domains.

To enable automatic code generation, the most common approach involves
extending the UML profiles to model SystemC or VHDL structures. In [96]
a UML2.0 profile for SystemC was first proposed, and this trend continued
in several works like [97], [98] and [99]. In [100], the SysML profile is ex-
tended for SystemC constructs, enabling automatic SystemC code generation
for simulation, and automatic VHDL code generation for synthesis. In all
these approaches, UML designs are just representations of SystemC models,
so low-level details such as ports, modules, or SystemC data types need to be
modeled in the UML diagrams. In fact, this is what enables the automatic

108

SystemC code generation. In [101], authors propose to use a subset of the
MARTE profile and generate rules to translate that subset to VHDL code.
A key feature is that they use a subset of C++ as an Action Language to
describe the behavior of states in state machines. Then, that C++ code is
translated to VHDL using a high level synthesis tool.

In order to perform automatic HDL code generation, the aforementioned
approaches restrict the modeling possibilities, for example with “one class-to-
one module” synthesis, or the restriction that only complete objects -and not
particular methods- can be mapped to hardware. Moreover, many SystemC
or VHDL implementation details need to be modeled in the UML diagrams
for the automatic translation to work. Our approach is to model the whole
system using standard UML2.0 in an Object Oriented manner prior to hard-
ware/software partitioning. This is particularly suitable for the processor-
centric approach, in which most of the final application will be running in
the processor. By modeling the whole application before hardware/software
partition, the implementation details related to both hardware and software
are abstracted away. This is crucial at this stage: it is what allows engineers
to perform a good, modularized OOP design. This type of design will later
on enable the engineer to use profiling tools and find precisely which OOP
methods need to be accelerated by hardware. In this way, useless translations
to hardware can be prevented. Moreover, by using standard UML2.0, many
tools from the software domain that have been developed for years can be
used, such as Sparx Enterprise Architect [102]. These tools support not only
explicit modeling of parallel algorithms, but also automatic C++ headers and
code generation from the UML diagrams. Many tailored UML profiles, al-
though better suited for modeling certain aspects of particular domains, are
still behind in tool support.

Complementing the high-level modeling approaches, another area of much
development is High Level Synthesis tools. These include automatic or semi-
automatic tools to translate constructs using a subset of languages like C/C+
to HDL code. Examples of open-source semiautomatic tools include ROCCC
[103], SPARK [104] and DWARV[105]. There are also many proprietary tools
such as DIME-C [106], CatapultC [107] or AutoESL [108]. All of them re-
quire rewriting effort on the original methods to particular coding styles and
C/C++ language subset, and hardware knowledge in order to generate opti-
mized HDL. Since they have specific interface definitions, hand-coded interface
modules are required to integrate the automatic-generated modules into the
complete system. A comparison of open-source tools can be found in [109], and
an excellent study of the proprietary AutoESL tool can be found in [110]. An-
other approach is to hand-code the modules, but using a clear coding method.
In [111] the two-process method is proposed: a Behavioral VHDL design ap-
plied on several designs made for the European Space Agency, including the
LEON3 processor [112]. In [113], authors show that the method decreased

109

man-years, code lines and bugs in many important projects, and that it is well
suited for implementing OOP methods, thereby creating short and readable
code. Although the two-process method is not a (semi)automatic tool, the
coding guidelines create a schema that could be the starting point for such
a tool. In this work, we compare three different ways to translate the C++
class methods that need to be accelerated by hardware to HDL: open-source
tool ROCCC, proprietary tool AutoESL, and the two-process VHDL coding
method.

A key feature of the proposed methodology is the union of a good modu-
larized OOP design captured in UML and implemented in C++ that makes it
possible to find precisely which methods need to be accelerated by hardware;
with semi-automatic tools or guidelines to translate these C++ methods to
HDL. This union reduces hardware coding effort, traditionally the most time-
consuming and error-prone stage of a hardware-accelerated application.

4.2 Methodology

The proposed methodology has four broad stages: A) OOP Design; B) C++
Implementation and Testing in a general purpose processor; C) Software mi-
gration, optimization and hardware/software partition; and D) Translation,
testing and integration of each hardware module in the final embedded plat-
form (see Fig. 4.2). In this Section, the steps of each stage are described, and
useful tools are presented.

4.2.1 OOP Design

In this stage, an OOP approach and the use of UML language for modeling is
proposed. As already stated, these are widely used in the software community,
and many modified UML approaches for hardware specific applications exist.
Hence, many software and hardware engineers are familiar with these tech-
niques and at least some of the associated tools. The use of well established
techniques and tools is important to help reduce the design effort by raising
the abstraction level, while not imposing the need for engineers to learn new
languages, methods and tools.

The OOP design includes concepts such as encapsulation, inheritance, mes-
saging, modularity, polymorphism, and data abstraction. In the proposed ap-
proach, abstraction, encapsulation and modularity are particularly important.
A modular design -in which the responsibilities of each class are clearly identi-
fied, and concise methods are created- is a key part of the methodology. This
kind of design assists the engineer in finding the exact methods that need to be
accelerated by hardware using profiling tools. This helps to reduce hardware

110

OOP Design

(Enterprise Architect

tool)

C++ Implementation

and Testing (Eclipse

IDE, gcc, gdb, valgrind

tools)

Application specification

SW migration &

optimization (Xilinx

tools: XPS, SDK, gprof,

xmd)

HW translation &

integration (Xilinx

tools: XPS, SDK, ISE,

AutoESL. ROCCC,

two-process)

Final embedded solution

[no more optimizations]

Optimized embedded code;
hw/sw partition and
embedded c++ testbenches

[need more optimizations]

Optimizations first
tested in general
purpose processor

[no more modules
to integrate]

[new module to
integrate]

[code is correct]

C++ functionally correct code
(golden model) and C++
testbenches

[need changes for
functionally correct
code]

Complete Design and C++
automatically generated headers
and/or code

Figure 4.2: Methodology overview

111

coding effort because no useless translations to hardware are done.

At this stage, the possible parallelizable sections of the algorithms can be
identified and modeled. Standard UML offers several ways to model parallel
thread-like behavior. One way is to model threads in the structural design
as Active classes. Active objects (instances of an active class) model the
concurrent behavior of real world objects, and can own an execution thread and
initiate control activities. Threads can also be modeled in behavioral diagrams.
Activity diagrams include specific fork/join bars to illustrate thread behavior.
These diagrams also include swimlines to show which objects perform the
activities modeled. Sequence diagrams also include par sections to indicate
that the interactions in those sections may be executed in parallel or in any
order. The most appropriate diagrams to capture the intended design vary in
different applications. Several profiles have been proposed to model designs for
cluster, parallel and heterogeneous computer architectures, which are beyond
the scope of this work.

The complete design is done using Spark’s Enterprise Architect [102], a
comprehensive UML analysis and design tool. This tool allows for structural
design - i.e, classes- and behavioral design -the description of the system be-
havior by interaction sequences, state machines, activity diagrams, etc. It
automatically generates documentation and the class skeleton in several lan-
guages (C++, Java, Python, etc.). It can also generate automatic code in
these languages, provided there is enough detail in the UML diagrams. The
tool also allows reverse engineering, making it possible to reflect in the UML
design changes made during implementation.

The output of this stage is the Structural and Behavioral design of the
solution, and also the class skeleton with members, methods and all comments
in C++ files.

4.2.2 C++ Implementation and Testing

The second stage is coding and testing the designed solution in a general
purpose processor. Although any programming language may be used, we
prefer C++ for several reasons. It is a widely used language with full OOP
support, allowing to port the UML design perfectly. It also has ample support
for running in different embedded processors. Thus, the software solution
developed in this stage serves not only as a reference model but also as part
of the final software that will run in the embedded processor. Finally, C++,
along with C and SystemC, is one of the strong contenders for the best input
language for High-level synthesis tools [19]. This means that much work is
being done on tools to automatically translate C++ constructs to HDL.

The first step is to code all the methods of the class skeleton exported from

112

the Enterprise Architect, using the behavioral design from the previous stage
as a guideline. The code for some or all of the methods might be automatically
generated. At this stage, the POSIX Thread API is used for multithreaded
programming. This API is the most common interface for thread program-
ming, with support in virtually all OS, including embedded OS such as Linux
or Xilinx’s lightweight embedded kernel xilkernel.

Next, the testing step includes both functional and correctness tests. Cor-
rectness tests assure that the available resources are correctly used -e.g, that
the solution does not have any memory leaks. This testing stage uses the
tools and resources available in a general purpose processor, making it much
easier to obtain a functionally correct complete solution. Any changes that
may be needed at this point to get to a functionally correct solution need to
be reflected in the UML OOP Design in the previous stage. To do this, a very
useful capability of the Enterprise Architect and many other UML capture
tools is reverse engineering, so the UML design can be captured from C++
code. Tests developed at this stage can also be used for testing in the em-
bedded platform later on. Functional verification against the specification can
also be done.

The tool used is the Eclipse IDE, with the GCC compiler and GDB de-
bugger. The GNU valgrind is used to assess correctness in the memory usage.
All of them are widely used open source tools.

The output of this stage is a correct, executable solution of the problem
running in a general purpose processor. This software solution may be used
both as a reference model and as part of the final software that will run in
the embedded processor, given that it uses the right language for codification,
as well as widely ported libraries for OS services, such as threads or memory
management. This reduces the software coding effort.

4.2.3 Software Migration, optimization and HW/SW
partition

In this stage, the whole software solution must be migrated to the final em-
bedded processor in a testing environment, in order to fully characterize the
resources needed in the embedded platform, perform all possible software op-
timizations, and decide which parts of the system need to be accelerated by
hardware. See Fig. 4.3 for an Activity Diagram of the steps in this stage.

The first step is to characterize the resources needed to execute the com-
plete software solution in the embedded platform. This includes an analysis of
the amount of memory needed, the different peripherals and their interfaces,
and a general measure of the processor usage. It must also be determined
whether an embedded OS will be necessary or not.

113

Create/Modify HW

platform (XPS tool)

Create/Modify SW

platform (SDK tool)

Migrate and Test SW

(SDK and gdb tools)

Profile SW (SDK,

gprof tools)

HW/SW partittion done --
Optimized and correct
embedded SW

Characterize

resources needed for

embedded processor

to run complete

application

C++ Implementation and
Testing

[complete new code]

[code
change]

[else]

[need
changes
in SW

platform]

[else]

[need
changes
in HW

platform]

[else]

[SW optimization possible]

Figure 4.3: Activity Diagram for the software migration, optimization and HW/SW
partition stage

114

The second step is to configure and generate the hardware platform to exe-
cute the whole software solution in the embedded processor. The configuration
of the embedded processor includes processor frequency and bus frequency, de-
bugging and profiling configurations, coprocessors such as floating point units,
internal memories and caches, interrupts, buses for peripherals, etc. The out-
put of this step is all the necessary hardware so that the embedded processor
may run, including inputs and outputs for the application, for debugging and
for profiling.

The third step is to configure the software platform in the embedded pro-
cessor. This includes the choice and configuration of operating system (if
any), input/output libraries, debugging and profiling libraries and memory
map. The output of this step is a software platform configured to run the
whole software solution in the embedded platform.

The fourth step is to migrate the software solution to the embedded plat-
form. The changes in the code needed for this migration depend on the embed-
ded processor, needed peripherals and software platform. For a C++ solution
with standard libraries such as malloc or pthread, most embedded operat-
ing systems and processors need only slight changes in the library interfaces
to communicate with peripherals and memory. The output of this step is a
complete executable software solution in the embedded platform.

The final step for this stage is to profile the software solution running in the
target embedded processor. The profiler is useful to point out the methods that
are time-consuming, although it is important to note that it may be impossible
to profile some libraries that have not been compiled with the appropriate flags
and also that profiling does not work with multi-threaded environment. For
more reliable time measures in these settings, the internal processor’s clock
or some specially included external timer may be needed. Using this profiling
information, the most time consuming methods are pointed out.

If possible, software optimizations for the particular architecture of the
embedded processor can be done (e.g. the use of fixed point arithmetics in a
non-FPU processor). Method optimizations that change the precision of the
algorithms but save operations can also be studied. Taking into account that
the tools for debugging and functional tests in a general purpose processor are
much better than in the embedded processor, the changes are first performed in
the C++ code in the general purpose processor. This affects the previous stage
of the methodology (C++ Implementation and Testing) and probably even the
OOP Design stage, as shown in the alternative branch in Fig. 4.3. As can be
seen in that figure, the changes in code may or may not call for modifications
in the previously generated hardware and software platforms. For example it
may require to add Block RAM memory (i.e., hardware platform change) or
a new software library (i.e., software platform change). This is an iterative
stage: the procedure might be repeated as long as the real-time performance

115

is not reached, and more software optimizations may be done.

Once no more software optimizations are possible, the final profiling points
to the methods that need to be accelerated by hardware to achieve the required
performance. Hence, the output of this step is the final hardware/software
partition.

The tools for this stage depend on the embedded processor and FPGA,
development boards and associated tools to be used. In this case study, the
Avnet Virtex4-FX12 evaluation board was used. This board includes a Xil-
inx Virtex4 FPGA with an embedded PowerPC405, so Xilinx’s Embedded
Development Kit [114] is used. This kit includes the Xilinx Platform Stu-
dio (XPS) tool for hardware platform configuration and generation, and the
Software Design Kit (SDK) used for software platform configuration and em-
bedded software migration. SDK is an Eclipse-based tool that comes with a
special GDB debugger and a special integrated GNU gprof profiler.

The output of this stage is the hardware/software partition and an opti-
mized, functionally correct software solution running in the embedded proces-
sor.

4.2.4 Hardware translation, testing and integration

The fourth stage is to translate the C++ methods that need to be acceler-
ated by hardware to HDL, to test and integrate them into the system, by
implementing the needed interfaces in hardware and software. In Fig. 4.4 the
Activity diagram of this stage can be seen.

In this work, three ways to translate the selected C++ methods to HDL
are evaluated: the ROCCC tool, the AutoESL tool and the two-process coding
method. These are shortly described in the following subsections. The entity
and its interfaces are tested using simulation and testbenches, which change
depending on the tool used. The output of this step is the hardware IP core
that passes all the simulated tests.

The following step involves performing unit tests for the IP core imple-
mented in the embedded platform. Hardware and software platforms needed
to run these tests in the embedded processor must be generated, following the
steps mentioned in Section 4.2.3. Then, unit test cases developed in Section
4.2.2 must be migrated. New test cases that take into account the particular
details of the hardware implementation and its interaction with the embedded
processor must also be done. The output of this step is the tested hardware
IP core.

Finally, integration tests must be done to see if the whole system with
the added hardware module is still functionally correct. For this purpose, the

116

Manual restructuring

of C++ method code

C++ functional test

Interface definition for

each input/output

variable

Automatic RTL

generation

Functional test (with

C++ testbench)

Report analysis &

comparison to other

solutions

Create new

solution & apply

opt. directive

Synthesize &

Simulation Test

Hand code C++

method using

two-process

Synthetize

Simulation Testing

Select appropriate

interface for each

input/output variable

Hand code in VHDL

the req. interfaces for

integ. in system(*)

Synthesize and

Simulate the

complete ipcore

Generate HW & SW

platform integrating

IPCore

Generate test cases

& Test

Test complete code

using new IpCore

C++ Method to Translate to HDL

Complete HW accelerated solution

(*) Some interfaces may be
automatically generated with
AutoESL.

[need C code rewriting for
optimization]

[correct &
optimized
solution
selected]

[functional /
optimization
changes
needed]

[one solution selected]

[need
optimization
directive]

[use AutoESL]

[more
optimizations
needed]

[use two-process]

[no more methods
to translate]

[need functional
changes]

[C++ code ok]

[functional
change needed]

[more methods to translate]

Figure 4.4: Activity Diagram for the hardware translation, testing and integration
stage, including the choices to use the AutoESL tool or the hand-coded two-process

117

system tests developed in Section 4.2.3 can be migrated. The output of this
step is the tested system, including the added hardware module.

Since only part of the system is accelerated by hardware, it is important to
keep in mind the theoretical maximum expected improvement to the overall
system. That theoretical maximum S ′max can be calculated by Amdahl’s law.
This law is concerned with the speedup achievable from an improvement to
a computation that affects a proportion P of that computation, where the
improvement has a speedup of S. For example, if 30% of the computation
may be the subject of a speedup, P will be 0.3; if the improvement makes the
portion affected twice as fast, S will be 2. Amdahl’s law states that the overall
speedup S ′ of applying the improvement will be:

S ′ =
1

(1− P) + P/S
(4.1)

The theoretical maximum S ′max can be calculated by assuming that the
portion P will have a infinity speedup (S = ∞). This maximum helps to
indicate when translating a part to hardware or increasing parallelism is not
worth the effort, since the impact on the complete application will not be sig-
nificant enough. This equation is also useful to check if the measured complete
accelerations are consistent with the measured partial accelerations.

The tools for this stage also depend on the embedded processor and FPGA.
In this case study, Xilinx’s Embedded Development Kit is used for hardware
and software configuration and development. Xilinx’s ISE is used for hardware
modules implementation, and Xilinx’s ISim simulator is used for unit simula-
tion and testing. The AutoESL and ROCCC semi automatic tools are used
to generate HDL code for the C++ methods.

The output of this stage is the tested system, including the complete soft-
ware and all the integrated hardware modules.

The ROCCC tool

The ROCCC compiler tool by Jacquard Computing is designed to create hard-
ware accelerators from a subset of C. The hardware generated is not intended
to replace entire software applications, but instead provide an application
speedup by replacing critical regions in software with a dedicated hardware
component. Users code hardware module in C, and then use these modules in
larger programs. ROCCC generates platform independent VHDL code from
C descriptions.

In order to run the VHDL code on a particular platform, users must create
glue code that attaches the automatically generated code to the system. There
are specific guidelines as to how to present the data to the automatically gen-

118

erated hardware module, so the glue code must follow those guidelines. The
tool implements several optimizations -loop unrolling, systolic array genera-
tion, pipeline, etc- which must be configured by the user in order to achieve
an optimized code.

The ROCCC GUI is a plugin designed for the Eclipse IDE that works
on both Linux and Mac systems. After VHDL code has been generated, the
modules need to be imported to Xilinx ISE or similar in order to synthesize
the design for the target FPGA.

The ROCCC is an open-source development, so download, documentation
and examples are available for free from Jacquard Computing.

The AutoESL tool

The AutoESL is a High Level Synthesis tool developed since 2006 by the
AutoESL company, which was acquired by Xilinx in 2011. Xilinx has released
this tool and also used it as a base for the new Vivado Design Suite. AutoESL
takes as its input a C, C++ or SystemC description of functionality at a
high level of abstraction. It then generates a device-specific Verilog or VHDL
description of a hardware implementation.

AutoESL has several optimization directives that can be applied to a given
design. From a given C/C++ code, different HDL solutions can be achieved
using different directives. AutoESL provides reports that compare each solu-
tion in terms of timing, area and power consumption of the generated design.
Although these measures are estimates, in a few minutes they enable the de-
signer to see the achieved solution after applying an optimization directive,
and also to compare it with other possible solutions.

The AutoESL GUI is an eclipse-based complete tool. It can be used to code
and test the C/C++ original code. Moreover, the C/C++ testbench can also
be used to test the generated design. In order to create some optimizations (like
the use of bit-accurate variables) special C/C++ types exist and the C/C++
code may need changes. The Xilinx ISE tool is integrated into AutoESL,
so the design can be synthesized from within the tool. Moreover, for some
interface types, AutoESL can create automatic master or slave ports for Xilinx
EDK’s standard buses. This greatly simplifies the integration of the generated
modules. However, for other types of interfaces -such as particular memory
access patterns or other buses- the interface modules need to be hand coded.

AutoESL is a proprietary tool, with a substantial price per license and
many years of development from both previous the company (called AutoESL)
and Xilinx.

119

The two-process design method

Two-process is a structured Behavioral VHDL design method that is partic-
ularly well suited for implementing OOP methods. The main goals for this
design method are to provide a uniform algorithm encoding, increase abstrac-
tion level and improve readability and bug finding. These goals are reached
by simple means: using record types in all ports and signal declarations, using
only two processes per entity, and high-level sequential statements to code the
algorithm.

The biggest difference between a program in VHDL and standard pro-
gramming language, such as C, is that VHDL allows concurrent statements
and processes that are scheduled for execution by events rather than in the
order they are written. This reflects indeed the data-flow behavior of real
hardware, but becomes difficult to understand and analyze when the number
of concurrent statements passes some threshold. On the contrary, analyzing
the behavior of programs written in sequential programming languages does
not become a problem even if the program tends to grow. These programs are
easier to understand because there is only one thread of control, and execution
is done sequentially from top to bottom.

The two-process method only uses two processes per VHDL entity: one
process that contains all combinational (asynchronous) logic, and one process
that contains all sequential logic (registers). Using this structure, the com-
plete algorithm can be coded in sequential (non-concurrent) statements in the
combinational process while the sequential process only contains registers, i.e.,
the state.

In this way, methods of classes that need to be migrated to hardware can be
translated as one VHDL entity, coding the whole algorithm using very similar
sequential statements to the ones used in C++. For this stage, a correct,
modular OOP design is vital, so that every method to be translated is short
and concise. The key is not having to rethink the algorithm to accommodate
the concurrent nature of hardware, but translating the algorithm from C/C++
syntax to VHDL syntax in a sequential manner. This is a Behavioral level HDL
coding method, i.e. the precise RTL architecture is not defined in the code.

The two-process method has shown to greatly decrease man-years, code
lines and bugs. In [113] some comparisons for ESA projects can be found,
including a comparison between the ERC32 memory controller MEC (designed
with ad-hoc methods) and the whole LEON3 processor designed with the two-
process method. Even though the LEON3 processor is a 100k gates design
and the MEC is only 30k gates; the LEON3 took 2 man-years, 15000 code
lines and had no bugs in the first silicon, while the MEC took 10 man-years,
25000 code lines and had to go through 3 silicon iterations.

All these reasons make the two-process method a good choice for translat-

120

Figure 4.5: SyRoTek arena and robot with dress arc.

ing the C++ object methods to VHDL.

4.3 Multiple Robot Localization

The System for Robotic Teleeducation (SyRoTek) [115] is an e-learning plat-
form for distance education of artificial intelligence, control engineering, mo-
tion planning and other fields related to mobile robotics. It has been suc-
cessfully used in education and research by institutions across Europe and the
Americas. The platform consists of fourteen autonomous mobile robots op-
erating on a 24/7 basis in an enclosed area with dynamically reconfigurable
obstacles (see Fig. 4.5). Users anywhere around the world can upload their
algorithms to the robots, gather their sensorymotor data and analyze their
behavior.

An important component of the platform is a visual localization system,
which determines position and heading of each robot in the arena. It consists of
a dedicated PC, an overhead camera and unique identification patterns placed
on the individual robots. Due to the system 24/7 operation, it is desirable
to implement the localization system on an embedded device with low power
consumption. The real-time constraint for the system is that it should be able
to process 1600× 1200 pixel images at a rate of 30 fps.

4.3.1 Method overview

The 1600×1200 gray scale image that is provided by the localization system
camera is processed in four consecutive steps. In the first step, the image is
transformed to make the arena appear as a rectangle aligned with the image

121

Figure 4.6: Original and rectified arena image.

edges. The rectified image is then convolved with a 40×40 annulus pattern,
and local maxima of the convolution are found. After that, endpoints of the
robot dress arcs are found to determine the robot heading. Finally, binary
identification tags at the robot dress centers are decoded.

4.3.2 Image rectification

The purpose of this step is to remove radial and perspective distortion of the
arena image, so that it appears as a rectangle aligned with the image edges
(see Fig. 4.6). The radial distortion, which is caused by camera lens imperfec-
tion, has been modeled by the method described in [116], and its parameters
have been established by using the MATLAB calibration toolbox [117]. The
perspective transformation, which results from the camera misalignment, was
modeled by a 3×3 projective transformation matrix. This matrix was calcu-
lated from the positions of the arena corners in the undistorted and rectified
image by means of solving a set of linear equations.

Using the established parameters of both transformations, a look-up table
mapping pixel coordinates of the rectified and captured image was generated.
The look-up table allows to perform both transformations in a single step,
thus reducing the number of floating point operations per pixel of the generated
image. Since the mapping of the pixels is not one-to-one, the brightness of each
rectified image pixel was calculated from four pixels of the captured image by
bilinear interpolation.

122

Figure 4.7: Rectified image part and convolution filter response

4.3.3 Position estimation

The circular shape of the robot dress outer arc allows to decompose the robot
localization to 2D position estimation followed by orientation calculation. To
determine the robot position, the rectified image is convolved with an 40×40
pixel annulus pattern with outer and inner diameter equal to the sizes of the
dress arc (see Fig. 4.5). The response of the convolution filter is then searched
for local maxima, which indicate robot positions in the arena (see Fig. 4.7).

Given the limited robot speed, camera resolution and fps, the convolution
of the entire image is not necessary. During standard system operation, the
convolution is performed only in a neighborhood of each robot’s position in the
previous frame. This also means that the image rectification can be performed
only in the areas where convolution is about to be calculated. Convolution
of the entire image is performed only when the system starts, resumes from
idle state, or if the robots are removed or added to the arena. The system
administrator can also force to search robots in the entire image in the case
the tracking algorithm fails.

4.3.4 Orientation calculation

As soon as positions of the robots are known, the robot orientation is estab-
lished from the dress arc. First, positions of several sampling points along the
dress ring are calculated. The brightness of each point is estimated from its
neighbouring pixels by bilinear transformation, constructing a vector that con-
tains the brightness of the pixels on the dress ring. The vector is normalized
and convolved with a kernel corresponding to the expected brightness gradient

123

(a) Sampled pixels (b) Convolution response

Figure 4.8: Orientation and identification process

at the endpoints of the dress arc (see Fig. 4.8).

Minimum and maximum of the convolution correspond to the positions of
these endpoints, and therefore, orientation of the robot is computed as the
average of the argmin and argmax of the resulting vector. To verify the angle
estimation, the distance of the found minimum and maximum is compared to
the dress arc angle.

4.3.5 Robot identification

The last step establishes the robot number by decoding a binary tag in the
robot dress center. Once the position and orientation of the robot is known,
brightness of sixteen pixels around its center is measured (see Fig. 4.8). Aver-
age brightness of each pixel group is then calculated and a threshold separating
white and black values is established (each identification tag has at least one
white and one black segment). The calculated brightness are thresholded and
the sequence of the four results encodes the robot number. Since the robots
are tracked, the identification is performed only once. After that, the identifi-
cation is run only to verify correctness of the localization algorithm.

4.4 Hardware/Software co-designed solution

In this section, the steps of the proposed methodology were applied to the mul-
tiple robot localization problem in order to achieve the accelerated embedded
solution.

124

4.4.1 OOP Design

In this stage, an OOP Design was made and expressed in UML diagrams.
Also, parallelizable sections were identified. The overall structural design of
the solution is shown in Fig. 4.9.

PositionCalculator

- convol_mask: Matrix<char>

+ exec(Matrix<uchar>*, Robot*) : void

+ execManyRobots(Matrix<uchar>*, Robot*, uint) : void

+ getRobotID(Matrix<uchar>*, Robot*) : void

+ newMaxPosition(int, <uint, uint>) : void

+ PositionCalculator(Matrix<char>*)

T:class

Matrix<T>

- cols: uint

- data: T*

- rows: uint

- step: uint

+ get_data_in_pos(uint, uint) : T

+ macc(Matrix<T>) : long

+ Matrix<T>(uint, uint) : void

+ set_data_in_pos(uint, uint, T) : void

+ sub_matrix(<uint, uint>, Matrix<T>*) : void

T:class

LoadableMatrix<T>

+ LoadableMatrix<T>(T*, uint, uint, uint) : void

+ macc() : void

+ sub_matrix_copy(LoadableMatrix<T>, <uint, uint>) : void

Robot

+ angle: float

+ id: uint

+ position: <uint, uint>

AngleCalculator

- filter: int*

- filter_len: uint

- max_radius: uint

- min_radius: uint

- step: uint

+ AngleCalculator(uint, uint, uint, int*) : void

+ exec(Matrix<uchar>*, Robot*) : void

Image

- _unbarrel_gxarray: float*

- _unbarrel_gyarray: float*

- _unbarrel_parray: uint*

- image_data: LoadableMatrix<uchar>

+ Image(LoadableMatrix<uchar>, uint*, float*, float*) : void

+ unbarrel_BL(<uint, uint>, LoadableMatrix<uchar>) : void

+ unbarrel_NN(<uint,uint>, LoadableMatrix<uchar>) : void

depends_on

depends
on

use

use

use

Figure 4.9: Structural Design

The Robot class contains the information of each robot, i.e., position, head-
ing and id. The class PositionCalculator calculates the new position of a
robot. For this task, the exec method takes as parameters a Robot and a
neighborhood of 50×50 pixels of the image around its position in the previous
frame. By convolving the 40×40 conv mask in that image section, the new
position of the robot is found. The sizes for the convolution masks and neigh-
borhood are configurable. In Fig. 4.10, a sequence diagram for the calculation
of the new position of one robot can be seen. The class AngleCalculator

calculates the new heading of a robot, by sampling the arc points on the
40×40 unbarreled section of the image where the robot actually is. The
identification of the Robot is done with the method getRobotID of the class
PositionCalculator.

Matrix operations are performed by a Matrix class. Since most matri-
ces are sub-matrices of bigger ones (e.g., an image section is a sub-matrix of
image), memory is only dealt with in very specific moments. The Loadable

125

-Matrix class inherits from Matrix and performs actual memory movements.
Finally, the Image class depends on LoadableMatrix, as it has an instance
of that class to contain the image data. The Image class knows about im-
age undistortion operation, implementing both bilinear and nearest neighbor
interpolation for comparison purposes.

main

image
:LoadableMatrix<T>

image_section
:LoadableMatrix<T>

PosCalc
:PositionCalculator

PosCalc.convol_mask
:Matrix<T>

posibleRobotPos
:Matrix<T>

loop find new position

[i=0...10, j=0...10]

loop to calculate the new position of the robot

alt new max

[conv_ij_res > max _conv_res]

sub_matrix_unbarell(image_section,
robot[n].position)

exec(image_section, robot[n])

newMaxPosition(0, robot[n].position)

Matrix<uchar>
(40, 40)

sub_matrix(<i,j>,posibleRobotPos)

macc(posibleRobotPos)

:convol_ij_res

newMaxPosition(conv_ij_res, <i,j>,)

[robot[n].position = max_convol_pos]:

Figure 4.10: Sequence Diagram for the calculation of the new position of one robot

It is important to note that there are a variety of possible structural de-
signs for the solution. In the software community, much work has been done in
design pattern, starting in 1994 from the foundational book “Design Patterns:
Elements of Reusable Object-Oriented Software” [118]. Evaluating which pat-
terns are applicable and useful in embedded software, and which are not, is a
promising and vast research area.

At this stage the possible parallel sections need to be identified. Analyzing
the algorithms allows one to see that the different stages in finding a robot’s

126

new position and orientation are not parallelizable. For the position calcu-
lation, the image section the robot was in needs to be already undistorted,
and then for angle calculation the robot’s new position is needed. However,
the complete process for each robot is independent of any other robot, so the
complete process can be done in parallel for each of the fourteen robots, for
example in fourteen different threads. These are shown in the activity dia-
gram of Fig. 4.11, where the bars show the fork and joins, and the horizontal
swimlanes show which class is responsible for each activity.

Image

PositionCalculator

AngleCalculator

Receive new frame

for each robot

undistort 50x50

image section

where the robot was

in previous frame

Calculate robot's new

position

Calculate robot's

new orientation

undistort 50x50

image section

where the robot was

in previous frame

Calculate robot's new

position

Calculate robot's

new orientation

Frame
processed

Robot
1...N

... [robot N][robot 1]

Figure 4.11: Activity Diagram showing the parallel nature of the new position and
orientation calculation for each robot (two robots in this diagram).

4.4.2 C++ Implementation and Testing

The class skeletons were automatically generated with the Enterprise Archi-
tect, along with partial code for some methods. The whole system was coded
using C++ and the Eclipse IDE. For multi-threaded programming, the Posix
threads C library was used, implementing the calculation of each robot’s po-
sition and orientation in a separate thread.

Unit tests were developed for the Matrix classes and also system tests with
a test suite of images from the arena and the known positions and angles of
the robots. The OpenCV library was used for image handling.

127

4.4.3 Software Migration, optimization and HW/SW
partition

An Avnet development kit including a V4-FX12 FPGA with a PowerPC405
embedded processor was used. The development tools used were Xilinx’s De-
sign Suite 11.2 for hardware and embedded software development, and GNU
valgrind and gprof for preliminary resource characterization.

First, the peripherals, memory and resources needed to run the software
solution in the embedded processor were characterized. The application needs
extensive memory, since the image is a 1600×1200 grayscale image and there
are three precalculated undistortion arrays, each storing one floating point per
pixel. That is close to 24 Mbytes of required memory. Hence, the on-chip fast
BlockRAMs included in the FPGA were not enough, and off-chip memory,
such as Flash and SDRAM, was needed. For initial tests, the images from the
camera could be loaded into this external memory, so the peripherals related
to image capture could be -for the time being- left apart. To have an idea
of the necessary processor resources, profiling was done in a general-purpose
processor. The execution time to process an image with 14 robots in a Core i5
M480 (2 cores@2.67GHz) is 30.74 ms, including undistortion, localization and
angle estimation for each robot.

Using this resource analysis, the hardware platform needed to run the
software solution in the embedded processor was generated. The memories
included were Flash, SDRAM and Block RAMs, and they were connected
through an IBM PLB (Processor Local Bus) bus to the processor. The Block
RAMs were included so that small image sections that are used many times
(such as the 50×50 pixel neighborhood of the robot) could be stored in these
on-chip memories. The PowerPC405 data and instruction internal caches were
also configured. For the initial testing phases, special programmable logic
modules for debugging and profiling were also added. The PowerPC405 and
the PLB bus were set at their maximum frequency (300 MHz for the PPC,
100MHz for the PLB).

Next, the software platform needed to be generated. Since the solution
uses threads, an embedded operating system with thread support is needed,
preferably following the POSIX API. Xilinx offers support for two possibilities:
xilkernel and Linux. Xilkernel is an open source kernel shipped with EDK,
which supports the core features required in a lightweight embedded kernel,
with a POSIX API for thread and mutexes. The Linux distribution does not
come with EDK but it is available for compilation for the PPC405 core. Both
are suitable solutions for the application, but xilkernel offers a simpler solution
that is enough for the requirements of this application.

However, since the target platform has only one processor with one core,
the execution of all threads is sequential, and hence there is no need for multi-

128

threaded programming for the initial software optimizations. In this platform,
the use of threads can only come in handy for parallel processing if more than
one hardware accelerator is included, as explained in the following subsection.
Using a standalone (not OS) platform in this stage simplifies measuring exe-
cution times (and debugging), and allows the use of Xilinx’s profiling tool to
guide the software optimizations (since this tool only works in the standalone
platform). Hence, for this stage, a standalone software platform was generated
for the processor.

A version of the C++ code without threads was built and tested in the
general purpose processor, since that is the base for software migration in
this stage. The migration of the complete software solution to the embed-
ded processor required only two minor changes. In the embedded solution,
images were loaded from the Flash memory instead of using OpenCV, and
dynamic memory for image sections was replaced by BlockRAMs. These in-
terface changes were encapsulated in a single configuration file, so the rest of
the code was unchanged.

Finally, the complete software solution was profiled in the embedded pro-
cessor. Since Xilinx’s profiler does not measure the time completely (e.g., the
time for interrupts or some of Xilinx’s libraries), it was only used to estimate
the percentages of time spent in each method. The real overall time that
the application takes was measured using the internal timer of the PPC, sav-
ing the timestamp when execution starts and then when it ends. These time
measurements were corroborated with oscilloscope measures.

Since the PowerPC405 has no FPU, all floating point operations were em-
ulated by Xilinx’s library. Hence, software optimizations were developed for
the PowerPC’s particular architecture. Profiling results for each code version
are shown in Table 4.1, and the corresponding bar graphic can be seen in Fig.
4.12.

The first column corresponds to the original code. The complete software
solution takes 1.6 seconds. Most of the time is spent in angle calculation,
so it was the first thing to tackle. The first optimization consisted in using
pre-calculated cosine and sine masks to find the arc-points that needed to be
sampled for angle calculation (see second column). Also, all floating point
operations in the angle calculation were changed to fixed point arithmetics
(see third column). These changes took the total time down to 0.9 seconds,
and the percentage of time spent in angle calculation down to 1.71%.

At this point image undistortion and matrix convolution took almost half
of the time each. Image undistortion could be simplified by taking the nearest
neighbor to calculate the pixel in the undistorted image, instead of the bilinear
interpolation with the four closest pixels. Of course, the nearest neigbour
interpolation would decrease precision of robot position and angle estimation.

129

Table 4.1: Profiling results for software optimizations. Times for complete solution
in milliseconds.

PPC405@300 MHz Core i5
orig.code cos mask fixed pt. unbarrel NN angle NI all opt.

Matrix::macc 28.56% 44.13% 51.00% 93.95% 95.46% 93.33%
angleCalc::exec 44.96% 14.96% 1.71% 3.16% 1.60% 2.73%
Image::unbarrel 26.48% 40.91% 47.29% 2.89% 2.94% 2.34%
complete code 1630 1078 926 501 495 30.74

The impact of nearest neighbor estimation on the algorithm precision can
be estimated as follows. The nearest neighbor estimation can be modeled as
a quantization noise, which adds errors up to half a pixel. It can be assumed
that this maximal noise- i.e half a pixel- does not appear more than twice per
one robot dress since the distortion is not so high. Therefore, in comparison
to the bilinear transformation, the robot position estimation precision might
be decreased by one pixel, which corresponds to an extra 3 mm (or 0.1% rela-
tive to the arena dimensions) localization error. If both the arc endpoints and
the robot position estimation are affected by the noise, the angle estimation
algorithm errs by two pixels. Since the arc circumference is approximately
120 pixels, the maximal introduced error is 0.1 radians (or 1.6%). To verify
the aforementioned estimations, one thousand images of the arena were taken
with robots at known positions, and the localization errors with the bilinear
and nearest neighbor undistortion methods were calculated. The largest error
introduced by the nearest neighbor interpolation was 1.59% for angle estima-
tion and 3 mm for position estimation, which is in good accordance with the
aforementioned calculation.

Switching to nearest neighbor interpolation caused the image undistortion
times to fall dramatically (see fourth column). The same change was intro-
duced for the brightness calculation in the angle estimation (see fifth column).
The aforementioned precision loss was far outweighed by the increase in the
algorithm’s efficiency.

All these changes were first implemented and tested in the general purpose
Corei5 processor, using its debugging and testing resources, and keeping the
golden reference model up to date. Migration to the PowerPC did not require
code changes. The test suite was images with fourteen robots in the arena
loaded in the Flash memory. Results for profiling in the Corei5 processor are
also shown in this table. The fastest code was used for this test (including all
optimizations and floating point arithmetics).

The final column for the PowerPC in the profiling table shows that 95.46%
of the time is spent in the Matrix::macc method. Although so far all methods
could be optimized by software taking into account the PowerPC architecture,
the Matrix::macc that does the convolution could not be accelerated by soft-

130

0

200

400

600

800

1000

1200

1400

1600

1800
ti

m
e

 (
m

s
)

original code cos & sin masks fixed point unbarrel NN angle NI

optimizations
angleCalc::exec

Matrix::macc

Image::unbarrel

Figure 4.12: Profiling results for software optimizations in the PPC.

ware. Moreover, although slightly over 3× acceleration was achieved with
software optimizations, the total time was still very high, and only enabled a
2 fps throughput. The only solution for decreasing this time and get closer to
the 30 fps goal was to accelerate the Matrix::macc in hardware.

This method is called 100 times in PositionCalculator::exec, which
searches for the new position of a robot, representing almost all the time spent
in position calculation. It is important to note that the modularity of the
OOP design and the encapsulation of the matrix operations in a separate
class allowed the profiling to accurately point where the most time-consuming
operation was, thus preventing useless translations to hardware.

An output of this stage was the complete, correct and optimized soft-
ware version running in the embedded PowerPC405 processor. The defi-
nite hardware-software partition led to the translation of the Matrix::macc

method to hardware.

4.4.4 Hardware translation, testing and integration

Next, the hardware module for the Matrix::macc was implemented, including
its interface with the memory and embedded processor. Hardware and software
changes were introduced to integrate this hardware module in the solution. In

131

this section, we show the translation using two-process. In section 4.4.4, we
show a comparison with AutoESL and ROCCC solutions.

The first step was to decide which interfaces were best suited for the mod-
ule. The macc method of a Matrix class object takes as a parameter a matrix
of the same size to convolve with itself. Hence, a good solution was to connect
the hardware module to two Block RAMs, one per matrix. The PowerPC is
connected to the other port of each Block RAM so it can load the matrices
data. The convolution is performed between two 40x40 matrices, but it is
known that one of those matrices is part of a bigger one (the 50x50 image
section). Hence, the PowerPC needs to tell the macc module in which address
of each Block RAM the matrices to be multiplied start. The size and step
of the matrixes are configurable parameters. When the convolution is done,
the hardware module can send the result back to the processor. This means
that for each convolution, there are three data exchanges: two addresses and
one result. The default bus used by EDK 11 to connect peripherals is the
PLB bus. This is a complex bus that is prepared for many different types of
slaves. A much simpler bus is the Device-Control Register(DCR), a bus that
can connect many slave modules in a daisy chain manner. This bus takes up
less logic and is the simplest solution that achieves the desired communication
pattern.

When Block RAM memories are added in EDK, they are wrapped in an
interface and connected automatically through a 64-bit PLB bus. This poses
the restriction that the other Block RAM port (that is, the port that is con-
nected to the macc hardware module) needs to be also 64 bits wide. Hence,
an interface between the Block RAM wrapper and the macc module needs to
be coded to extract the desired bytes from the 64-bit wide memory data.

Each module (the macc module, the DCR interface module, and the mem-
ory interface modules) was tested separately and then integrated into a single
ipcore. This ipcore was included in the hardware platform in XPS. Software
was changed to use this hardware accelerator instead of calculating the macc in
software. For this purpose, the only change was to replace the Matrix::macc

method code by sending the two addresses through the DCR bus, sleeping the
processor while waiting for the hardware module to work, and asking through
the DCR bus for the result. The amount of time needed for the macc hardware
module to complete the convolution was 17µs.

The best possible complete-system performance was achieved since each
part (hardware and software) ran at its maximum frequency. For this, a Digital
Clock Manager (DCM) available in the FPGA was used and the connection
between the embedded processor and hardware was done in an asynchronous
way, i.e, using memories and the DCR bus. Table 4.2 shows the execution
times using one hardware macc accelerator. The measures were all taken
using the PowerPC internal timer.

132

Table 4.2: Profiling results for hardware accelerated solution.

ms %
posCalc::exec 27.35 54.82
angleCalc::exec 7.96 15.96
Image::unbarrel 14.58 29.22
complete solution 49.89 100

As can be seen from Table 4.2, with one core the reached acceleration was
9.92×: the last software accelerated version took 495 ms and the hardware
accelerated version took 49.89 ms. This factor multiplied the already achieved
3× improvement through software accelerations, achieving so far almost 30×
acceleration. The achieved throughput so far was 20 fps, a very good through-
put but still short from the 30 fps goal. The throughput could be further
improved by making use of the inherent parallel sections in the algorithm,
multithreaded programming and the ability to replicate the hardware macc

module.

Multithreaded programming

An analysis conducted during OOP Design indicated that the complete pro-
cess of finding the new position and orientation of a robot is independent from
other robots -and hence parallelizable. When having only one processor and
one hardware accelerator, this property of the algorithm cannot be exploited.
However, if more hardware accelerators are added, there is a chance for paral-
lelization.

As already discussed, a xilkernel platform with thread support was set up
in the PowerPC; and the complete process (undistortion, position calculation
and angle calculation) for one robot was placed in separate threads. Since
each position calculation calls the Matrix::macc method 100 times, and that
method sleeps waiting for the hardware to end, the processor is idle to exe-
cute another thread during that time. The most usual way for multithreading
scheduling is preemptive multitasking, in which the OS decides when to switch
the thread context, using a scheduling policy. However, the time slot assigned
to each thread in xilkernel scheduler is 10 ms, too large compared with the
17µs each thread is sleeping while waiting for the hardware to end. Hence,
cooperative multitasking needs to be used. In this approach, each thread relin-
quishes control when it reaches a stopping point, using the yield() function
that makes the next thread to continue execution. While one thread is wait-
ing for one hardware convolution to end, the other thread can send a new pair
of addresses to the other hardware convolution accelerator. In this way, the

133

Table 4.3: Profiling results with one, two, four and six hardware accelerators

one ipcore two ipcore four ipcore six ipcore
ms % ms % ms % ms %

posCalc::exec 27.35 54.82 14.66 39.55 8.13 26.44 7.62 25.18
angleCalc::exec 7.96 15.96 7.83 21.12 8.04 26.15 8.06 26.64
Image::unbarrel 14.58 29.22 14.58 39.33 14.58 47.41 14.58 48.18
complete solution 49.89 37.07 30.75 30.26

processor and two hardware modules are working in parallel. This is achieved
with very small software code changes: just by creating the threads, using the
yield function in the macc method, and joining the threads. The xilkernel
has to be set up and the hardware accelerator replicated.

Table 4.3 and Figure 4.13 show the results for profiling with one, two, four
and six hardware accelerators.

0

5

10

15

20

25

30

35

40

45

50

ti
m

e
 (

m
s
)

one ipcore two ipcores four ipcores six ipcores

number of ipcores
angleCalc::exec

Matrix::macc

Image::unbarrel

Figure 4.13: Profiling results for hardware acceleration

From these results, it can be seen that with four cores the solution pro-
cesses 32, 5 fps, achieving the goal of 30 fps. To do so, software optimizations,
hardware acceleration and parallelization using multithreaded programming
and many ipcores were needed.

134

AutoESL, ROCCC and two-process comparison

For comparison purposes, the AutoESL and ROCCC high level synthesis
tools were also used to synthesize the methods that needed hardware accel-
eration. With the ROCCC tool only the most time consuming part of the
Matrix::macc method was implemented: the multiplication and accumula-
tion of two vectors, without taking into account that they were matrices. This
was done in this manner since the ROCCC version used did not have support
for multidimensional arrays -this has been included in the latest version. Table
4.4 presents a comparison of area, frequency and VHDL code lines between
the ROCCC generated code and the two-process code.

This table shows that the area requirements for the ROCCC generated
code are around 11 times higher than the two-process implementation. The
maximum frequency obtained with the ROCCC tool is 57% of the one obtained
with the two-process. The C code had to be rewritten in order for the ROCCC
generator to work. Moreover, there are specific guidelines as to how to present
the data for the hardware module to use, so all the modules to feed data need
to be hand-coded in VHDL/Verilog, as the modules to connect with the PPC.

With AutoESL, the complete Matrix::macc was implemented. In order
to get a synthesizable C code, many changes had to be made. Matrix is a
template class, since both unsigned and signed char matrices are used in the
application (the image is unsigned char, but the convolution mask is signed).
The template had to be taken away, making the translation for a particular
type. Moreover, the method had to be translated from a class method to
a standalone function. Hence, the attributes of the class object (rows, cols,
step, data) had to be translated to either function parameters or variables.
Also, for the tool to synthesize a BRAM memory port for the matrices, the
matrices could not be passed as memory addresses, but had to be passed as
fixed sized arrays (40×40 for the convolution mask and 50×50 for the image
section). Hence, an extra parameter had to be included to tell the function
at which offset of the big 50×50 matrix, the 40×40 matrix to convolve starts.
After these changes were made, a first synthesizable solution was achieved,
and HDL was generated.

From this solution several optimization directives can be applied, such
as bit accurate data types, correct interfaces, loop unrolling or pipelining.
Data types could not be more optimized, since the 8 bit char representation
is the smallest possible for this problem. From the interfaces, the code had
already been changed to take both matrices as single-port BRAMs. For the
extra offset parameter, an ap none interface was selected, so that AutoESL
would not generate any particular protocol for the variable, and later on this
new parameter could be included in the DCR bus. The complete module has
AutoESL’s ap hs handshake protocol, which would later on need a hand-coded
module to integrate to the DCR bus interface. Taking as a guide the already

135

ROCCC Two-Process
Slices 652 59
Slice FF 779 107
LUTs 1099 112
BRAMs 2 0
GCLKs 4 1
DSP48s 1 1
Latency 3200 1600
Freq (Mhz) 125.98 216.29
lines of code 1467 170

Table 4.4: ROCCC and Two-Process comparison for vector MACC

AutoESL Two-process
First code Opt. code

Slices 71 95 144
Slice FF 73 89 128
LUTs 104 125 214
BRAMs 0 0 0
DSP48s 1 1 1
Latency 4882 1606 1606
Freq (Mhz) 167 144 166

Table 4.5: AutoESL and Two-Process comparison for Matrix::macc

hand-coded design, a pipeline optimization to the inner loop was applied.
With these optimizations, the AutoESL design achieved the two-process design
throughput.

Table 4.5 provides a comparison between the first AutoESL synthetizable
solution, the solution after optimization and two-process solution. Although
comparative reports previous to actual synthesis are provided, the results in
this table are the ones provided after Xilinx’s ISE implementation from the
automatically generated VHDL source.

It is very interesting to see that the optimized version of the automatic
code achieves a smaller solution with the same throughput- and similar max-
imum operating frequency- as the two-process hand-coded version. It is true
that the two-process is focused on code clarity and size more than area opti-
mization, and that the optimization directives used in AutoESL were inspired
in the hand-coded design. However, these results are very good for an auto-
mated tool like AutoESL. They are also consistent with the reported results
in a BDTI Benchmark that implemented a wireless communications DQPSK
receiver with the AutoESL tool and compared it with hand-coded design [110].

To include this solution into the complete system, all the interface modules

136

need to be hand-coded. The DCR bus interface is not one of the supported
buses in this AutoESL version, so a hand-coded interface module between the
DCR bus and the ap hs handshake interface is needed. Since in XPS the
BRAMs are automatically included in a 64-bit wrapper and the module takes
in 8 bit data, a memory interface also needs to be handcoded.

4.5 Acceleration, area and power consump-

tion results and analysis

In this section, an analysis of the acceleration, power and area results is pre-
sented. All the results in this section use the hardware cores generated with
the two-process method.

4.5.1 Acceleration

Overall Acceleration

This section analyzes the overall acceleration based on software optimization,
hardware acceleration and parallelization with many ipcores and multithread-
ing programming. Figure 4.14 shows the execution times of each different
solution, and Fig. 4.15 shows the overall acceleration of each solution over the
original code and the most optimized software version.

From these figures, it can be seen that software optimizations account for
approximately 3×, hardware acceleration for almost 10×, and parallelization
using multithreading and hardware replication for another 1.6×. It is inter-
esting to note that, while hardware acceleration yields the most speedup, it
is traditionally the most time-consuming step. Software optimization, as well
as multithreaded programming, are achieved with smaller software changes.
This also shows the importance of research in high level synthesis area that
seeks to reduce the time spent in a step that has the potential of providing
vast acceleration.

Theoretical maximum

The maximum theoretical acceleration is an important analysis, bound by
Amdahl’s law, as described in Section 4.2.4. It demonstrates how close each
solution is to the most optimized possible, and helps the designer decide when
it is not worth doing any more work , because the maximum possible acceler-
ation achievable from further optimizations is too low, as compared with the
extra work required. Since Amdahl’s law applies to parallelization, it makes

137

1630

1078

926

501 495

49,89 37,07 30,75 30,26

0

200

400

600

800

1000

1200

1400

1600

1800

orig code cos & sin

mask

fixed pt unbarrel

NN

angle NI one ipcore two

ipcores

four

ipcores

six

ipcores

solution version

ti
m

e
 (

m
s

)

Figure 4.14: Execution times of all solutions

sense to apply it only from the most optimized software version, and analize
the effect of hardware acceleration and parallelization with many ipcores and
multithreading programming.

As can be seen from the profiling information of the most optimized code,
the portion P that can be accelerated, i.e., the Matrix::macc, is 0.9546. As-
suming an infinite speedup of that portion, Amdahl’s law yields:

S ′max = lim
S→+∞

1

(1− P) + P/S

=
1

(1− 0.9546) + 0
= 22

With one core, the acceleration reached 9.92× (Fig. 4.15). That is 45%
of the theoretical maximum, so it seems reasonable to try to improve it. An
interesting point is that in that solution, acceleration is not really obtained by
parallelization in the sense of Amdahl’s law, i.e., multicore parallelization, but
by changing the implementation platform from software to hardware. When
adding parallelization in the multicore sense, with four cores and multithreaded
programming, the acceleration goes up to 16.1×, which is 73% of the theoret-
ical maximum. Figure 4.16 shows the percentage of the theoretical maximum

138

1
3,29

32,67

43,97

53,01 53,87

1 1

9,92

13,35
16,10 16,36

0

10

20

30

40

50

60

original code all opt code one ipcore two ipcore four ipcore six ipcore

only software with hardware acceleration

Solution

A
c

c
e

le
r
a

ti
o

n

over orig. code over all opt code

Figure 4.15: Acceleration of each hardware accelerated solution compared with soft-
ware solutions

achieved by adding each hardware ipcore, and compares it with the most op-
timized software solution.

Theoretical maximum for acceleration using only parallelization with
many ipcores and multithreading programming

Figure 4.17 shows the acceleration obtained with each new hardware ipcore,
and compares with the solution with only one hardware ipcore. This Figure
takes into account only Position Calculation, which is the section of the algo-
rithm where parallelization was really done, and also the acceleration of the
complete solution.

As already discussed, the addition of one core amounts to 10× acceleration.
The addition of four cores and multithreading programming amounts to an
extra 1.6×. Although this extra 1.6× is what allows the solution to get to the
30 fps performance goal, it seems small as compared with the 10× original gain
obtained by adding hardware acceleration. An interesting analysis involves
using Amdahl’s law to check which theoretical maximum is achievable by the
parallelization step, that is, by comparing each ipcore added to the solution
that already has software optimizations and hardware acceleration with one
ipcore.

139

45,10%

60,70%

73,17% 74,36%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

one ipcore two ipcore four ipcore six ipcore

Solution

%
 a

c
h

ie
v

e
d

 o
f

th
e

o
r
ic

a
l

m
a

x
.

Figure 4.16: Acceleration achieved with respect to Amdahl’s theoretical maximum

The portion P that can be accelerated by parallelization, i.e., the Matrix::macc,
is 0.5482 (see Table 4.2). Of course, it is lower than in the most optimized soft-
ware solution, since it already includes the acceleration provided by hardware
implementation. Assuming an infinite speedup of that portion, Amdahl’s law
yields:

S ′max = lim
S→+∞

1

(1− P) + P/S

=
1

(1− 0.5482) + 0
= 2.21

Therefore, even though 1.6× seems small, it amounts to (1.6/2.21) ∗ 100 =
72, 4% of the theoretical maximum acceleration that Amdahl’s law yields.

The analysis with Amdahl’s law can help decide when the possible achiev-
able acceleration is not worth the effort of adding a new ipcore. However, in
this problem there is a way of obtaining another interesting measure: what is
the theoretical maximum amount of hardware maccs that can be added and
still provide some acceleration? The answer to this question is related to the
software overhead to manage an extra ipcore. For example, if the time spent
in the yield function was exactly half the 17 µs that the hardware module
takes, then it would not be worth adding more than one hardware accelera-

140

1

1,87

3,36

3,59

1

1,35

1,62 1,65

0

1

2

3

4

one ipcore two ipcore four ipcore six ipcore

number of ipcores

A
c

c
e

le
ra

ti
o

n

position calculation complete solution

Figure 4.17: Acceleration of each additional hardware ipcore, as compared with the
solution with only one hardware ipcore.

tor. With two accelerators, the processor would not be able to feed data into
both of them on time: one would always be idle. Hence, the answer lies in
the relationship between the time taken by the yield function and the really
parallel activity, in this case, the hardware macc. Although it is not possible
to measure the exact time the yield takes by itself, an approximation was
measured in a system that has only two threads and only yields among them,
resulting in 1.9µs. This means that approximate 8.9 yields can be theoretically
executed while a hardware macc is working, so that at most 7 or 8 hardware
maccs can be included. This is a rough upper limit, but it still means, for
example, that the position of the fourteen robots in the arena would not be
able to be processed completely in parallel under this setting. The processor,
which is the one executing the whole control of the application, will be the
bottleneck.

After four cores, no acceleration is obtained by adding a new core (see
Fig.4.17). That means that five threads are running: one for the main ap-
plication and one for each ipcore. This is less than the calculated theoretical
maximum of 7 cores, but still reasonable since this system has more threads
and each thread does more than just yield, and, therefore, uses more processor
time -which is now the bottleneck of the system.

Another important thing to note in Figure 4.17 is that when adding a

141

Table 4.6: Area occupied by each solution. Hardware implemented using two-
process.

only PPC(sw) 1 ipcore 2 ipcore 4 ipcore 6 ipcore
amount % amount % amount % amount % amount %

Slices 3530 64 3882 70 4245 77 5037 92 5443 99
Slice FF 4136 37 4379 40 5054 46 6408 58 7763 70
LUTs 3690 33 4236 38 5083 46 6871 62 8665 79
BRAMs 13 36 13 36 17 47 25 70 33 91
DSP48 0 0 1 3 2 6 4 12 6 18
PowerPC 1 100 1 100 1 100 1 100 1 100

second core, the obtained acceleration for the Position Calculation is not 2
but 1.87. This is expected, since there is a software overhead for adding a
core: the overhead involved in creating an extra thread and all the yielding
logic between the threads, and in joining the threads after processing In the
case of four cores, the difference between the theoretical speedup of 4 and the
obtained one of 3.36 is bigger. From four cores on, there is no acceleration
gain. From these results it is likely that the exact point at which the processor
becomes 100% busy is around four cores.

4.5.2 Area

The area occupied by each solution can be seen in Table 4.6. It should be noted
that there are extensive area requirements just to get the PowerPC embedded
processor and the necessary memories to run the software solution. Figure
4.18 shows the percentage of extra slices required for each solution.

An interesting fact to note is the impressive routing effort of Xilinx’s tools,
which achieve a working design that occupies 99% of the slices in the FPGA. It
is also important to notice not only the occupied slices, but also each category,
to get a clearer idea of the occupancy of the FPGA. The routing tool at the
begining leaves more slices with less occupation, and it then not only occupies
more slices, but also more things in each slice.

4.5.3 Power and Energy consumption

Table 4.7 presents an estimation of power and energy consumption obtained
by using Xilinx’s Xpower. This analysis only includes the consumption of the
FPGA core: the external load and the I/O consumption are not considered.
Since these are estimations, perhaps the most significant number is the saving

142

0

9,97

20,25

42,69

54,19

0

10

20

30

40

50

60

only PPC (only soft) one ipcore two ipcore four ipcore six ipcore
Solution

%
 o

f
E

x
tr

a
 S

li
c

e
s

Figure 4.18: Percentage of extra slices occupied as compared with the only software
solution

of energy shown in the last column.

Figure 4.19 shows the estimated energy consumption per frame, and Fig-
ure 4.20 presents the estimated energy saving. The energy saving is expressed
in the same way as the acceleration is portrayed in the previous figures,i.e.,
in terms of how many times less energy each solution consumes. Of course,
this shows the obvious correlation between acceleration and energy consump-
tion: although adding new ipcores makes the power consumption higher, since
the acceleration obtained is very important, the energy consumption is signif-
icantly reduced. However, when the time acceleration is smaller (e.g., from
2 to 4 ipcores) or almost zero (e.g., from 4 to 6 cores), the energy saving is
not so big, or is even smaller than in previous solutions. This is because the
acceleration gain is not enough to counteract the increase in power consump-
tion. Hence, taking into account only energy consumption, adding more than
2 ipcores does not make much sense.

Finally, 92% energy saving with four ipcores, as compared with the software
solution, or in other words, the possibility to process one frame consuming
13× less energy, entails a very important result that advocates for hardware
acceleration and parallelization in FPGA based chips.

143

Table 4.7: Power and Energy consumption. Hardware implemented using two-
process.

Design I(mA) P (mW) T (ms) E (mJ) Save
opt. code 377 453 495 224 0%
1 ipcore 394 473 49,89 24 89%
2 ipcore 422 506 37,07 19 92%
4 ipcore 460 552 30,75 17 92%
6 ipcore 506 607 30,26 18 92%

224,10

23,62
18,76 16,98 18,36

0

50

100

150

200

250

only PPC (only soft) one ipcore two ipcore four ipcore six ipcore

Solution

E
n

e
rg

y
 (

u
J

)

Figure 4.19: Estimated energy consumption per frame for each solution

4.5.4 Overall analysis

A relevant question about acceleration, area and energy consumption results
would be: which is the solution that best balances all these measures? Data
indicates that the solution with 2 ipcores seems more appropiate. This solution
achieves almost 27 fps, a 13, 15× acceleration from the most optimized code
solution, 92% energy saving, and with only 20% area increase. The one-core
solution only achieves 20 fps with 89% energy saving and 10% area increase.
The four-core solution achieves 32 fps, but with almost no extra energy saving
and doubling the area increase to 40% as compared with the two-core solution.
The six-core solution, on the other hand, offers almost no acceleration with

144

9,5

11,9

13,2

12,2

1,0
0

2

4

6

8

10

12

14

only PPC (only soft) one ipcore two ipcore four ipcore six ipcore

Solution

S
o

lu
ti

o
n

 c
o

n
s

u
m

e
s

 x
 t

im
e

s
 l
e

s
s

Figure 4.20: Estimated energy saving

an extra energy and area penalty. Hence, it seems reasonable to point the
two-core solution as a good balance between acceleration, energy consumption
and area.

However, the design target was to process 30 fps, and the two-core solu-
tion falls 3 fps -i.e. 10%- short of this performance goal. Hence, the four-core
solution is the most suitable. Using four cores, the final hardware accelerated
solution processes over 32 fps of 1600× 1200 pixel images, thereby achieving a
real-time embedded solution to the problem. The acceleration from the origi-
nal solution to the final software optimized and hardware accelerated solution
is 53×, while the acceleration from the optimized software solution is 16×.
The XC4VFX12 FPGA -which is the smallest Virtex4 FPGA- is 92% occu-
pied, as compared with the original 64% for only software solution. On the
other hand, the use of four cores represents an estimated 92% energy saving
from the software solution, that is, 13× less energy consumption to process
each frame. This embedded solution takes 30.7 ms to process an image, while
the most optimized software solution in a Corei5 (2 cores@2.67GHz) takes
30.4 ms. This means that the embedded solution achieved by following the
proposed methodology runs with a comparable speed as to the method imple-
mentation on an up-to-date general purpose processor, but is smaller, cheaper,
and demands less power and energy.

145

4.6 Conclusions

In this chapter, we proposed a methodology to achieve real-time embedded
solutions using hardware acceleration, but with development times similar to
software projects. This methodology applies to the growing field of processor-
centric embedded systems with hardware acceleration in FPGA-based chips.
The methodology is applied to a novel algorithm for multiple robot localization
in global vision systems, demonstrating its usefulness for embedded real-time
image processing applications.

The methodology helps to reduce design effort by raising the abstraction
level while not imposing the need for engineers to learn new languages and
tools. Taking advantage of the processor centric approach, the whole system
is designed using well established high level modeling techniques, languages
and tools from the software domain. In other words, it is an OOP design
approach expressed in UML and implemented in C++ using multithreaded
programming. The methodology also helps to reduce software coding effort
since the C++ implementation provides not only a golden reference model,
but may also be used as part of the final embedded software. Hardware cod-
ing, traditionally the most time-consuming and error-prone stage of hardware-
accelerated applications, is simplified. The key to reducing hardware coding
effort is to join a good OOP design implemented in C++, which allows engi-
neers to precisely find the methods that need to be accelerated by hardware,
with automatic tools or guidelines to translate the selected C++ methods to
HDL.

A simple and robust algorithm for multiple robot localization in global vi-
sion systems is also presented. The algorithm was specifically developed to
work reliably 24/7 and to detect the robot’s positions and headings even in
the presence of partial occlusions and varying lighting conditions. To achieve
a real-time embedded solution able to process over 30 fps, we applied the
methodology, and performed software optimizations, used hardware accelera-
tion, and extracted parallelism by including multiple ipcores in a multithreaded
programming environment. The final embedded solution processes 1600×1200
pixel images at 32 fps, uses four hardware acceleration cores, occupies 92% of
the XC4VFX12 FPGA and consumes approximately 17mJ of energy per frame.
This represents a 16× acceleration with respect to the most optimized software
solution, with a 43% increase in area but a 92% energy saving.

146

Chapter 5

Conclusions

The overall goal of this thesis was to contribute to the field of hardware/software
co-design of embedded systems. We proposed a new co-design methodology
that reduces design and implementation effort in an important field of em-
bedded systems design- processor-centric embedded systems in FPGA-based
chips-, at a time when the growing complexities of these designs make the need
for new methodologies, languages and tools vital. Processor-centric embedded
systems in FPGA-based chips is a growing and novel field of embedded sys-
tems: during 2011, both Xilinx and Altera launched new chip families that
combine powerful ARM processor cores with low-power programmable logic.

To achieve the overall goal, we proposed three particular goals:

1. the study of traditional co-design flows using processors and off-the-
shelve ICs, and their application to the co-design of an embedded system
with real-time, power consumption and size requirements.

2. the study of traditional design flows using FPGAs and their applica-
tion to the design of an embedded system that requires massive data
processing with real-time constraints

3. the proposal of a new co-design methodology for a significant class of
embedded systems: processor-centric embedded systems with hardware
acceleration in FPGA-based chips. The new methodology should be fo-
cused in reducing design and implementation effort, integrating method-
ologies, languages and tools from both the software and hardware do-
main.

The main contributions in each of these goals are discussed in the following
three sections.

147

5.1 Embedded systems using processors and

ICs

We devoted chapter 2 to this goal. We described the co-design of a control
embedded system applying the traditional flow in which processors and ICs
are combined: the development of the mini-robot ExaBot. This system has
stringent real-time, power consumption and size requirements, providing a
challenging case study.

The main contributions regarding this goal are:

• The adaptation of traditional co-design flows in which processors and
off-the-shelve ICs are combined, to the autonomous robotics field. The
particular co-design flow is explained and the development of the robot
following its different stages is shown.

• The design, construction and testing of the ExaBot robots. The main
goal for pursuing this task was to obtain a low-cost robot that could be
used not only for research, but also for outreach activities and education.
In this sense, neither the commercially available research robots nor the
commercially available educational robots were a suitable solution. Six
ExaBot robots are currently in use in the Laboratorio de Robótica y
Sistemas Embebidos of the FCEN-UBA. They have been used for edu-
cational robotics activities for high school students, research experiments
in mobile robotics, and education in graduate and undergraduate uni-
versity courses.

5.2 Embedded systems using FPGAs

Chapter 3 is devoted to the study of traditional design flows using FPGAs.
Some embedded systems require massive data processing with real-time con-
straints that cannot be met with the standard microprocessor and IC approach.
In these cases, solutions based on FPGAs are common. These approaches take
advantage of the inherent parallelism of many data processing algorithms and
allow to create massive parallel solutions. Nowadays, around 35% of the em-
bedded engineers use FPGAs in their designs, which makes this an important
field in embedded system design.

The main contributions regarding this goal are:

• The introduction of a traditional FPGA design flow, derived from the
analysis of design flows presented in several foundational FPGA books.
A short comparison among those design flows is also presented.

148

• The application of this HDL-based design flow to achieve real-time pro-
cessing of an IR image for hot spot detection. The novel image seg-
mentation algorithm was thought for parallel implementation, and its
design was carefully tailored to achieve the real-time constraints. In this
manner, the achieved embedded solution successfully segments the im-
age with a total processing delay equal to the acquisition time of one
pixel (i.e., at video rate). This processing delay time is independent of
the image size. There is also no need for extra memory to store parts
or the complete image. Sizing equations are presented, and timing, area
and power consumption parameters are discussed.

From bibliographical research and our own experience- shown in that chap-
ter -, we discussed pros and cons of this HDL-based design flow. For one, this
type of flow allows to create extremely tailored, top performance designs that
meet tight real-time constraints with low power consumption and small oc-
cupied area. However, it requires a lot of man power from knowledgeable
designers. It is also highly prone to error, and hard to test and verify even us-
ing top notch simulation tools and complex verification environments. Clearly,
measures to decrease design time by raising the abstraction level of design and
implementation are needed to cope with the ever increasing complexity of
applications. This is addressed in the next goal.

5.3 A new co-design methodology for processor-

centric embedded systems in FPGA-based

chips

Chapter 4 is devoted to the proposal of a new co-design methodology in FPGA-
based chips. Hardware/software co-designed solutions try to combine the best
of both software and hardware worlds, making use of the ease of programming
a processor while designing tailored hardware accelerator modules for the most
time-consuming sections of the application. The inclusion of processor cores
embedded in programmable logic has made FPGAs an excellent platform for
these approaches. During 2011, both Xilinx and Altera (the two major FPGA
vendors) launched new chip families that combine powerful ARM processor
cores with low-power programmable logic. According to the 2012 Embedded
Market Survey, 37 % of the engineers that do not use FPGAs in their current
designs confirmed that this trend will change their minds.

The novelty of this approach together with its potential in the embed-
ded system world makes academic research in hardware/software co-design in
FPGA-based chips an important field. The main problem to tackle in these
designs is time-consuming and complex development. The rising complexity

149

of applications makes it difficult for designers to model the functional intent of
the system in languages that are used for implementation, such as C or HDLs.
Moreover, although the traditional HDL-based design flow is useful to gener-
ate top performance tailored designs, it comes at the cost of time-consuming,
complex and error-prone development. Although advances have been made
in high-level modeling and high-level synthesis, there is still a great need for
co-design methodologies, languages and tools, so that the recent combination
of powerful processors with programmable logic can reach its full potential.

The main contributions regarding this goal are:

• The proposal of a co-design methodology for the growing field of processor-
centric embedded systems with hardware acceleration in FPGA-based
chips. The goal is to achieve real-time embedded solutions, using hard-
ware acceleration, but achieving development time similar to that of
software projects. The methodology’s main advantages are:

– It helps to reduce design effort by raising the abstraction level while
not imposing the need for engineers to learn new languages and
tools. Taking advantage of the processor centric approach, the
whole system is designed using well established high level mod-
eling techniques, languages and tools from the software domain. In
other words, it is an OOP design approach expressed in UML and
implemented in C++ using multithreaded programming.

– The methodology also helps to reduce software coding effort since
the C++ implementation provides not only a golden reference model,
but may also be used as part of the final embedded software.

– Hardware coding, traditionally the most time-consuming and error-
prone stage of hardware-accelerated applications, is simplified. The
key to reducing hardware coding effort is to join a good OOP de-
sign implemented in C++, which allows engineers to precisely find
the methods that need to be accelerated by hardware, with semi-
automatic tools or guidelines to translate the selected C++ meth-
ods to HDL.

• The proposal of a simple and robust algorithm for multiple robot localiza-
tion in global vision systems. The algorithm was specifically developed
to work reliably 24/7 and to detect the robot’s positions and headings
even in the presence of partial occlusions and varying lighting conditions.

• The co-designed implementation of this algorithm to achieve a real-time
embedded solution able to process over 30 fps. For this, we applied the
methodology, and performed software optimizations, used hardware ac-
celeration, and extracted parallelism by including multiple ipcores in a
multithreaded programming environment. The final embedded solution

150

processes 1600 × 1200 pixel images at 32 fps, uses four hardware ac-
celeration cores, occupies 92% of the XC4VFX12 FPGA and consumes
approximately 17µJ of energy per frame. This represents a 16× acceler-
ation with respect to the most optimized software solution, with a 43%
increase in area but a 92% energy saving. This case study shows the
usefulness of the proposed methodology for embedded real-time image
processing applications.

5.4 Publications

During the course of this work, we have published 11 conference papers and 3
journal articles.

Journal Articles:

• 2013 Accelerating embedded image processing for real time: a case study,
Sol Pedre, Tomáš Krajńık, Eĺıas Todorovich and Patricia Borensztejn.
Journal of Real Time Image Processing, Springer-Verlag Berlin Heidel-
berg, ISSN 0018-9162. in press. JCR 2011 IF 1.020

• 2013 A Behavior-Based approach for educational robotics activities, Pablo
de Cristóforis, Sol Pedre, Matias Nitsche, Thomas Fischer, Facundo Pes-
sacg, Carlos Di Pietro, IEEE Transactions on Education, vol 56, no 1,
pp 61-66, ISSN 0018-9359. JCR 2011 IF 1.021

• 2010 A mobile mini robot architecture for research, education and pop-
ularization of science, Sol Pedre, Pablo de Cristóforis, Javier Caccavelli
and Andrés Stoliar, Journal of Applied Computer Science Methods, vol
2, no 1, pp 41-59, ISSN 1689-9636.

Conference Full Papers:

• 2012 Hardware/Software co-design for real-time embedded image process-
ing: a case study, Sol Pedre, Tomáš Krajńık, Eĺıas Todorovich and
Patricia Borensztejn. Progress in Pattern Recognition, Image Analy-
sis and Applications, 17th Iberoamerican Congress on Pattern Recogni-
tion, CIARP 2012, Buenos Aires, Argentina, Septiembre 2012. Lecture
Notes in Computer Science (LNCS), Springer-Verlag Berlin Heidelberg,
vol 7441, pp 621-628, ISSN 0302-9743.

• 2012 A co-design methodology for processor-centric embedded systems
with hardware acceleration using FPGA, Sol Pedre, Tomáš Krajńık, Eĺıas
Todorovich and Patricia Borensztejn. VIII IEEE Southern Programmable
Logic Conference – SPL 2012, Bento Goncalvez, Brazil,20 al 23 de Marzo
2012,pp 7-14, ISBN 978-1-4673-0185-5, Published in IEEEXplore.

151

• 2012 A simple visual navigation system for an UAV,Tomáš Krajńık, Ma-
tias Nistche, Sol Pedre, Libor Přeucil and Marta Mejail, 9th IEEE In-
ternational Multi-Conference on Systems, Signals and Devices – SSD12,
Chemnitz, Germnay, March 20-23 , 2012, pp 1-6. ISBN: 978-3-9814766-
1-3. Published in IEEEXplore.

• 2011 A new programming interface for Educational Robotics, Javier Cac-
cavelli, Sol Pedre, Pablo de Cristóforis, Andrea Katz and Diego Bender-
sky, 4th International Conference on Research and Education in Robotics,
EUROBOT 2011. Prague, Czech Republic, June 2011. Communications
in Computer and Information Science (CCIS), Springer-Verlag Berlin
Heidelberg, vol 161, pp 68-77, ISSN 1865-0929.

• 2009 Real Time Hot Spot Detection using FPGA, Sol Pedre, Andrés
Stoliar and Patricia Borensztejn. Progress in Pattern Recognition, Im-
age Analysis and Applications, 14th Iberoamerican Congress on Pattern
Recognition, CIARP 2009, Guadalajara, Mexico, November 2009. Lec-
ture Notes in Computer Science (LNCS) 5856, Springer-Verlag Berlin
Heidelberg, pp 595-602, ISSN 0302-9743.

• 2009 Decision Support System for Hot Spot Detection, Esther Salami,
Sol Pedre, Patricia Borensztejn, Cristina Barrado, Andrés Stoliar and
Enric Pastor, Intelligent Environments 2009, Proceedings of the 5th In-
ternational Conference on Intelligent Environments, Barcelona, Spain,
2009. ISBN: 978-1-60750-034-6. IOS Press, pp 277-284.

Conference Short Papers:

• 2011 Layered Testbench for Assertion-Based Verification, José Mosquera,
Sol Pedre and Patricia Borensztejn. VII IEEE Southern Programmable
Logic Conference – SPL 2011, Designer Forum, Córdoba, Argentina, 13-
15 April 2011.

• 2010 Derivation of PBKFD2 keys using FPGA, Sol Pedre, Andrés Sto-
liar and Patricia Borensztejn. VI IEEE Southern Programmable Logic
Conference – SPL 2010, Designer Forum, Ipojuca, Porto Gallinas Beach,
March 24-26 2010.

• 2010 Audio sobre ethernet: implementación utilizando FPGA, José Mos-
quera, Andrés Stoliar, Sol Pedre, Maximiliano Sacco and Patricia Boren-
sztejn. VI IEEE Southern Programmable Logic Conference – SPL 2010,
Designer Forum, Ipojuca, Porto Gallinas Beach, March 24-26 2010.

• 2009 ExaBot: a mini robot for research, education and popularization of
science, Pablo De Cristóforis, Sol Pedre, Javier Caccavelli and Andrés
Stoliar. VI Latin American Summer School in Computational Intelli-
gence and Robotics - EVIC2009, Santiago, Chile, December 2009.

152

• 2008 Exabot: un robot para divulgación, docencia e investigación, Pablo
De Cristóforis, Sol Pedre and Juan Santos. V Jornadas Argentinas de
Robótica – JAR08, Bah́ıa Blanca, Argentina, November 2008.

5.5 Future work

There are several paths to follow the work of this thesis. One important aspect
to develop is the union of functional verification methodologies and frameworks
with the proposed co-design methodology, both from the software domain as
from the hardware domain. As discussed in section 3.3.2, there are several
works in the field of functional verification of FPGA-based designs, includ-
ing topics such as assertion driven simulation, functional coverage, random
stimuli generation or formal techniques. Some important books cover Sys-
temVerilog for Verification [4], Open Verification Methodology [71] or C++
based verification [70]. This is a vast area of FPGA-based design, that has
seen much development in recent years. Studying these methodologies, and
merging them with software functional verifications techniques to achieve a
comprehensive co-design functional verification framework to include in the
proposed co-design methodology, is a challenging and interesting path to con-
tinue.

Another path to continue is to apply the methodology to further case stud-
ies. Here, it would be particularly interesting to choose case studies that cover
several fields of embedded systems, to show that the methodology is useful
for a wide range of applications. In this sense, an interesting study is “The
Landscape of Parallel Computing Research: A View from Berkeley” [119],
a study conducted during two years by eleven specialists of several areas of
computer science led by David Patterson. In this study, the authors propose
a list of 13 “dwarfs”, patterns of computation and communication that are
the core of any application. They propose that new computer architectures
are tested with sample algorithms of these dwarfs, instead of using traditional
benchmarks that are biased to already established architectures. From these
13 dwarfs, 8 have applications in the embedded system domain. For example,
the proposed localization algorithm is an example of the Dense Linear Algebra
dwarf. These dwarfs provide a good guide to choose further case studies, and
be able to state that the proposed methodology is useful for the core of most
embedded system applications. Moreover, these case studies would provide the
chance to further test the AutoESL high level synthesis tool, or it’s new ver-
sion, the Vivado Design Suite, that are clearly very promising tools. Finally,
these implementations could be done using Xilinx’s new Zynq-7000 platform,
which combines a powerful ARM with low power programmable logic, to have
a taste of what these new platforms can achieve.

153

Appendices

154

Appendix A

Exabot Schematics and PCB

155

156

157

158

159

M
C

L
R

M
C

L
R

M
C

L
R

160

3
+ 3
-

2
+2
-

161

162

163

Bibliography

[1] C. Maxfield, The Design Warrior’s Guide to FPGAs. Elsevier, 2004.

[2] R. Cofer and B. Harding, Rapid System Prototyping with FPGAs. El-
sevier, 2006.

[3] P. P. Chu, FPGA prototyping by VHDL Examples. Wiley, 2008.

[4] C. Spears, SystemVerilog for Verification, 2nd ed. Springer, 2008.

[5] S. Kilts, Advanced FPGA Design. Architecture, Implementation and Op-
timization. John Wiley & Sons, 2007.

[6] W. Wolf, FPGA-Based System Design. Prentice Hall, 2004.

[7] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots, 1st ed. MIT Press, 2004.

[8] T. Noergaard, Embedded System Architecture - A Comprehensive Guide
for Engineers and Programmers. Elsevier, 2005.

[9] S. Heath, Embedded Systems Design. Newnes Publishers, 2003.

[10] P. Marwedel, Embedded Systems Design. Springer, 2006.

[11] A. Jerraya and W. Wolf, “Hardware/software interface codesign for em-
bedded systems,” Computer, vol. 38, no. 2, pp. 63–69, Feb. 2005.

[12] J. Ganssle and M. Barr. (2011, Oct.) Embedded Systems Glossary. [On-
line]. Available: http://www.netrino.com/Embedded-Systems/Glossary

[13] D. U. E. Blanza and C. U. E. Holland, “Embedded Market
Survey,” EETimes and Embedded.com, p. 84, 2012. [Online].
Available: http://seminar2.techonline.com/∼additionalresources/esd
apr2012/ubme embeddedmarket2012 full.pdf

[14] Altera. (2011, Oct.) Altera Introduces SoC FPGAs: Integrating
ARM Processor System and FPGA into 28-nm Single-Chip Solution.
[Online]. Available: http://www.altera.com/corporate/news room/
releases/2011/products/nr-soc-fpga.html

164

http://www.netrino.com/Embedded-Systems/Glossary
http://seminar2.techonline.com/~additionalresources/esd_apr2012/ubme_embeddedmarket2012_full.pdf
http://seminar2.techonline.com/~additionalresources/esd_apr2012/ubme_embeddedmarket2012_full.pdf
http://www.altera.com/corporate/news_room/releases/2011/products/nr-soc-fpga.html
http://www.altera.com/corporate/news_room/releases/2011/products/nr-soc-fpga.html

[15] Xilinx. (2011) Xilinx Introduces Zynq-7000 Family, Industry’s
First Extensible Processing Platform. [Online]. Available: http:
//press.xilinx.com/index.php?s=34135&item=18

[16] M. Santarini, “Zynq-7000 EPP sets stage for new era of innovations,”
Xcell Journal, vol. 75, pp. 8–13, May 2011.

[17] Reinaldo Bergamaschi et al., “The State of ESL Design [Roundtable],”
IEEE Design & Test of Computers, vol. 25, no. 6, pp. 510–519, 2008.

[18] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A
prescription for Electronic System-Level Methodology. Morgan Kauf-
mann, 2007.

[19] B. Bailey and G. Martin, ESL Models and their Application Electronic
System Level Design and Verification in Practice. Springer, 2010.

[20] S. Pedre, P. de Cristóforis, J. Caccavelli, and A. Stoliar, “A mobile mini
robot architecture for research, education and popularization of science,”
Applied Computer Science Methods, vol. 2, no. 1, pp. 41–59, Feb. 2010.

[21] S. Pedre, A. Stoliar, and P. Borensztejn, “Real Time Hot Spot Detec-
tion Using FPGA,” in Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, ser. Lecture Notes in Computer Sci-
ence, E. Bayro-Corrochano and J.-O. Eklundh, Eds. Springer Berlin
Heidelberg, 2009, vol. 5856, pp. 595–602.

[22] S. Pedre, T. Krajnik, E. Todorovich, and P. Borensztejn, “A co-design
methodology for processor-centric embedded systems with hardware
acceleration using FPGA,” in 2012 VIII IEEE Southern Conference
on Programmable Logic (SPL), L. Agostini, E. Boemo, C. Zeferino,
M. Glesner, and L. Rosa, Eds. IEEE, march 2012, pp. 1–8.

[23] S. Pedre, T. Krajńık, E. Todorovich, and P. Borensztejn, “Hard-
ware/Software Co-design for Real Time Embedded Image Processing: A
Case Study,” in Progress in Pattern Recognition, Image Analysis, Com-
puter Vision, and Applications, ser. Lecture Notes in Computer Science,
L. Alvarez, M. Mejail, L. Gomez, and J. Jacobo, Eds. Springer Berlin
Heidelberg, 2012, vol. 7441, pp. 599–606.

[24] S. Pedre, T. Krajńık, E. Todorovich, and P. Borensztejn, “Accelerating
embedded image processing for real time: a case study,” Journal of Real
Time Image Processing, 2013, to appear.

[25] IFR. (2012, Aug.) International Federation of Robotics - Industrial
Robots Statistics 2011. [Online]. Available: http://www.ifr.org/
industrial-robots/statistics/

165

http://press.xilinx.com/index.php?s=34135&item=18
http://press.xilinx.com/index.php?s=34135&item=18
http://www.ifr.org/industrial-robots/statistics/
http://www.ifr.org/industrial-robots/statistics/

[26] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots - Chapter 1: Introduction, 1st ed. MIT Press, 2004.

[27] IFR. (2012, Aug.) International Federation of Robotics - Service Robots
Statistics 2011. [Online]. Available: http://www.ifr.org/service-robots/
statistics/

[28] F. B. V. Benitti, “Exploring the educational potential of robotics in
schools: A systematic review,” Computers & Education, vol. 58, no. 3,
pp. 978–988, Apr. 2012. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S0360131511002508

[29] (2012, Aug.) RobotShop. [Online]. Available: http://www.robotshop.
com/

[30] K-team corporation. (2013) Khepera, Khepera II and Khepera III.
[Online]. Available: www.k-team.com

[31] Adept Mobile Robotics. (2013) Pioneer 2-DX and 3-DX. [Online].
Available: robots.mobilerobots.com

[32] C.-T. Chen, Analog and Digital Control System Design - Transfer Func-
tion, State Space, and Algebraic Methods. Sounders College Publishing,
2006.

[33] P. Horowitz and W. Hill, The art of electronics, 2nd ed. Cambridge
University Press, 1989.

[34] T. Bräunl, Embedded Robotics - Mobile Robot Design and Applications
with Embedded Systems, 2nd ed. Springer-Verlag, 2006.

[35] RoboticsConnections. (2012, Aug.) Traxster Kit. [Online]. Available:
http://www.roboticsconnection.com/p-15-traxster-robot-kit.aspx

[36] P. Steggles and S. Gschwind, “The ubisense smart space platform,” in
Third International Conference on Pervasive Computing, 2005.

[37] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “ The GRASP
multiple micro UAV testbed ,” IEEE Robotics and Automation Maga-
zine, 2010.

[38] “General Purpose Type Distance Measuring Sensors - GP2D120 Data
sheet,” Sharp, p. 10, may 2006. [Online]. Available: www.sharpsma.
com/webfm send/1205

[39] Devanatech. (2012, Aug.) SRF05 Ultrasonic Ranger documentation.
[Online]. Available: http://www.robot-electronics.co.uk/htm/srf05tech.
htm

166

http://www.ifr.org/service-robots/statistics/
http://www.ifr.org/service-robots/statistics/
http://linkinghub.elsevier.com/retrieve/pii/S0360131511002508
http://linkinghub.elsevier.com/retrieve/pii/S0360131511002508
http://www.robotshop.com/
http://www.robotshop.com/
www.k-team.com
robots.mobilerobots.com
http://www.roboticsconnection.com/p-15-traxster-robot-kit.aspx
www.sharpsma.com/webfm_send/1205
www.sharpsma.com/webfm_send/1205
http://www.robot-electronics.co.uk/htm/srf05tech.htm
http://www.robot-electronics.co.uk/htm/srf05tech.htm

[40] “ACS712 Fully Integrated, Hall-Effect-Based Linear Current Sen-
sor IC with 2.1 kVRMS Voltage Isolation and a Low-
Resistance Current Conductor Data Sheet,” Allegro Microsys-
tems Inc., p. 15, aug 2012, revised bla. [Online]. Avail-
able: http://www.allegromicro.com/Products/Current-Sensor-ICs/
Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspx

[41] “TS-7250 Data Sheet,” Embedded ARM, p. x, revised xxxx. [Online].
Available: www.embeddedarm.com/epc/ts7250-spec-h.html

[42] T. Wilmshurst, Designing Embedded Systems with PIC Microcontrollers.
Principles and Applications. Elsevier, 2007.

[43] “L298 Dual Full Bridge Driver Data Sheet,” STMicroelectronics,
p. 13, revised 2000. [Online]. Available: www.st.com/internet/analog/
product/63147.jsp

[44] “PIC18F2331/2431/4331/4431 Data Sheet - 28/40/44-Pin Enhanced
Flash Microcontrollers with nanoWatt Technology, High-Performance
PWM and A/D,” Microchip, p. 392, sep 2010. [Online]. Available: www.
microchip.com/wwwproducts/Devices.aspx?dDocName=en010271

[45] “LM319 Dual Comparator Data Sheet,” Fairchild Semiconductor, p. 8,
revised 2012. [Online]. Available: http://www.fairchildsemi.com/ds/
LM/LM319.pdf

[46] K. Ogata, Modern Control Engineering, 4th ed. Pearson Prentice Hall,
2003.

[47] Cadsoft. (2012, Aug.) Eagle. [Online]. Available: www.cadsoftusa.com

[48] Novarm. (2012, Aug.) DipTrace. [Online]. Available: www.diptrace.com

[49] “L293 Datasheet - Push-Pull four channel driver with
diodes,” ST Microelectronics, p. 7, july 2003. [Online].
Available: www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/CD00000059.pdf

[50] “DC Micromotors - Series 2224...SR Data Sheet,” Faulhaber, p. 2,
revised 2012. [Online]. Available: www.faulhaber.com/uploadpk/
EN 2224 SR DFF.pdf

[51] “LM78XX/LM78XXA Data sheet - 3-Terminal 1A Positive Voltage
Regulator,” Fairchild semiconductors, p. 28, August 2012. [Online].
Available: www.fairchildsemi.com/ds/LM/LM7805.pdf

[52] Microchip. (2012, Aug.) MPLAB Integrated Development En-
vironment. [Online]. Available: www.microchip.com/stellent/
idcplg?IdcService=SS GET PAGE&nodeId=1406&dDocName=
en019469&part=SW007002

167

http://www.allegromicro.com/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspx
http://www.allegromicro.com/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspx
www.embeddedarm.com/epc/ts7250-spec-h.html
www.st.com/internet/analog/product/63147.jsp
www.st.com/internet/analog/product/63147.jsp
www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010271
www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010271
http://www.fairchildsemi.com/ds/LM/LM319.pdf
http://www.fairchildsemi.com/ds/LM/LM319.pdf
www.cadsoftusa.com
www.diptrace.com
www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00000059.pdf
www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00000059.pdf
www.faulhaber.com/uploadpk/EN_2224_SR_DFF.pdf
www.faulhaber.com/uploadpk/EN_2224_SR_DFF.pdf
www.fairchildsemi.com/ds/LM/LM7805.pdf
www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002

[53] “PIC18F2585/2680/4585/4680 Data Sheet - 28/40/44-Pin Enhanced
Flash Microcontrollers with ECAN Technology, 10-Bit A/D and
nanoWatt Technology,” Microchip, p. 482, oct 2009. [On-
line]. Available: http://www.microchip.com/wwwproducts/Devices.
aspx?dDocName=en010305

[54] “CD4049UB, CD4050B Data Sheet - CMOS Hex Buffer/Converters,”
Texas Instruments, p. 38, August 1998, revised May 2004. [Online].
Available: www.ti.com/lit/ds/symlink/cd4050b.pdf

[55] “MAX232, MAX232I Data Sheet - Dual EIA-232 Drivers/Receivers,”
Texas Instruments, p. 18, February 1989, revised March 2004. [Online].
Available: www.ti.com/lit/ds/symlink/max232.pdf

[56] “LM350 3.0 A, Adjustable Output, Positive Voltage Regulator
Data Sheet,” ON Semiconductor, p. 10, August 2006, revision
4. [Online]. Available: http://www.onsemi.com/pub link/Collateral/
LM350-D.PDF

[57] “LM323 Three-terminal 3 A adjustable voltage regulators Data
Sheet,” STMicroelectronics, p. 15, February 2008, revision 4. [Online].
Available: www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/CD00000466.pdf

[58] M. A. Nitsche and P. Cristóforis, “Real-Time On-Board Image Process-
ing Using an Embedded GPU for Monocular Vision-Based Navigation,”
in Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, ser. Lecture Notes in Computer Science, L. Alvarez,
M. Mejail, L. Gomez, and J. Jacobo, Eds. Springer Berlin Heidelberg,
2012, vol. 7441, pp. 591–598.

[59] P. De Cristóforis, M. Nitsche, T. Krajńık, and M. Mejail, “Real-time
monocular image based path detection,” Journal of Real Time Image
Processing, 2013, to appear.

[60] P. De Cristóforis, “Vision-based mobile robot system for monocular nav-
igation in indoor/outdoor environments,” Ph.D. dissertation, Facultad
de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2013.

[61] T. Piré, “Evasión de obstáculos en tiempo real usando visión estéreo,”
in VII Jornadas Argentinas de Robótica, Nov. 2012.

[62] T. Pire, P. de Cristóforis, M. Nitsche, and J. J. Berlles, “Stereo vision
obstacle avoidance using disparity and elevation maps,” in IEEE RAS
Summer School on Robot Vision and Applications, 2012.

[63] J. Caccavelli, S. Pedre, P. de Cristóforis, A. Katz, and D. Bendersky,
“A New Programming Interface for Educational Robotics,” in Research

168

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010305
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010305
www.ti.com/lit/ds/symlink/cd4050b.pdf
www.ti.com/lit/ds/symlink/max232.pdf
http://www.onsemi.com/pub_link/Collateral/LM350-D.PDF
http://www.onsemi.com/pub_link/Collateral/LM350-D.PDF
www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00000466.pdf
www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00000466.pdf

and Education in Robotics - EUROBOT 2011, ser. Communications in
Computer and Information Science, D. Obdržálek and A. Gottscheber,
Eds. Springer Berlin Heidelberg, 2011, vol. 161, pp. 68–77.

[64] P. De Cristoforis, S. Pedre, M. Nitsche, T. Fischer, F. Pessacg, and
C. Di Pietro, “A Behavior-Based Approach for Educational Robotics
Activities,” IEEE Transactions on Education, vol. 56, no. 1, pp. 61–66,
2013.

[65] INVAP. (2012) INVAP. [Online]. Available: www.invap.com.ar

[66] M. Heimlicher and M. Oberholzer. (2010) FPGA
Technology and Industry Experience. [Online]. Avail-
able: http://www.enclustra.com/assets/files/download/ETH FPGA
Technology and Industry Experience 100526.pdf

[67] P. Dillien. (2010) An Overview of FPGA Market Dynamics.
[Online]. Available: http://www.soccentral.com/results.asp?CatID=
488&EntryID=30730

[68] Xilinx. (2012) Field Programmable Gate Array.
[Online]. Available: http://www.xilinx.com/training/fpga/
fpga-field-programmable-gate-array.htm

[69] P. P. Chu, FPGA Prototyping by Verilog Examples. John Wiley & Sons,
2008.

[70] M. Mintz and R. Ekendahl, Hardware Verification with C++: A Prac-
titioner’s Handbook. Springer, 2006.

[71] C. D. Systems, Open Verification Methodology User Guide. Cadence
Design Systems, 2010.

[72] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient Embedded Computing,”
Computer, vol. 41, no. 7, pp. 27–32, Jul. 2008. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4563875

[73] E. Salami, S. Pedre, P. Borensztejn, C. Barrado, A. Stoliar, and E. Pas-
tor, “Decision Support System for Hot Spot Detection,” in Proceedings
of the 5th International Conference on Intelligent Environments, ser.
IE’09. IOS Press, 2009, pp. 277–284.

[74] “SAA7113H - 9-bit video input processor Data sheet,” Philips, p. 81, jul
1999. [Online]. Available: http://www.datasheetcatalog.org/datasheet/
philips/SAA7113H 1.pdf

169

www.invap.com.ar
http://www.enclustra.com/assets/files/download/ETH_FPGA_Technology_and_Industry_Experience_100526.pdf
http://www.enclustra.com/assets/files/download/ETH_FPGA_Technology_and_Industry_Experience_100526.pdf
http://www.soccentral.com/results.asp?CatID=488&EntryID=30730
http://www.soccentral.com/results.asp?CatID=488&EntryID=30730
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4563875
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4563875
http://www.datasheetcatalog.org/datasheet/philips/SAA7113H_1.pdf
http://www.datasheetcatalog.org/datasheet/philips/SAA7113H_1.pdf

[75] “Dual-Port Block Memory Core v6.3,” Xilinx, p. 20, Aug 2005.
[Online]. Available: http://www.xilinx.com/support/documentation/
ip documentation/dp block mem.pdf

[76] “FIFO Generator v4.3,” Xilinx, p. 19, March 2008. [Online].
Available: http://www.xilinx.com/products/intellectual-property/
FIFO Generator.htm

[77] S. Pedre, T. Krajńık, E. Todorovich, and P. Borensztejn, “A co-design
methodology for processor-centric embedded systems with hardware ac-
celeration using FPGA,” in IEEE 8th Southern Programmable Logic
Conference. Brazil: IEEE, 2012, pp. 7–14.

[78] S. Pedre, T. Krajńık, E. Todorovich, and P. Borensztejn, “Hard-
ware/Software Co-design for Real Time Embedded Image Processing:
A Case Study,” in CIARP, 2012, pp. 599–606.

[79] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, September 2005.
[Online]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20&path=ASIN/0262201623

[80] J. Bruce and M. Veloso, “Fast and accurate vision-based pattern detec-
tion and identification,” in IEEE International Conference on Robotics
and Automation - ICRA. IEEE, sept. 2003, pp. 1277 – 1282.

[81] G. Klančar, M. Kristan, S. Kovačič, and O. Orqueda, “Robust and effi-
cient vision system for group of cooperating mobile robots with applica-
tion to soccer robots,” ISA Transactions, vol. 43, no. 3, pp. 329 – 342,
2004.

[82] N. Gunay and E. Dadios, “A robust and accurate color-based global
vision recognition of highly dynamic objects in real time,” in 8th Asian
Control Conference (ASCC). IEEE, may 2011, pp. 90 –95.

[83] M. Brezak, I. Petrović, and E. Ivanjko, “Robust and accurate global
vision system for real time tracking of multiple mobile robots,” Robotics
and Autonomous Systems, vol. 56, no. 3, pp. 213–230, Mar. 2008.

[84] R. Rao, C. Taylor, and V. Kumar, “Experiments in Robot Control
from Uncalibrated Overhead Imagery,” in Experimental Robotics IX,
ser. Springer Tracts in Advanced Robotics, J. Ang, MarceloH. and
O. Khatib, Eds. Springer Berlin Heidelberg, 2006, vol. 21, pp. 491–
500.

[85] O. Keskin and E. Uyar, “A framework for multi robot guidance con-
trol,” in Holonic and Multi-Agent Systems for Manufacturing, ser. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2009, vol.
5696, pp. 315–323.

170

http://www.xilinx.com/support/documentation/ip_documentation/dp_block_mem.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dp_block_mem.pdf
http://www.xilinx.com/products/intellectual-property/FIFO_Generator.htm
http://www.xilinx.com/products/intellectual-property/FIFO_Generator.htm
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0262201623
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0262201623

[86] G. Klančar, D. Matko, and S. Blažič, “Wheeled mobile robots control
in a linear platoon,” Journal of Intelligent and Robotic Systems, vol. 54,
pp. 709–731, 2009.

[87] M. Happe, E. Lubbers, and M. Platzner, “A self-adaptive heterogeneous
multi-core architecture for embedded real-time video object tracking,”
Journal of Real-Time Image Processing, pp. 1–16, 2011.

[88] R. Rodriguez-Gomez, E. Fernandez-Sanchez, J. Diaz, and E. Ros, “Code-
book hardware implementation on FPGA for background subtraction,”
Journal of Real-Time Image Processing, pp. 1–15, 2012.

[89] J. Paul, A. Laika, C. Claus, W. Stechele, A. El Sayed Auf, and E. Maehle,
“Real-time motion detection based on SW/HW-codesign for walking res-
cue robots,” Journal of Real-Time Image Processing, pp. 1–16, 2012.

[90] OMG. (2006) UML Profile for System on a Chip (SoC) Version 1.0.1 -
formal/06-08-01. [Online]. Available: www.omg.org/spec/SoCP/1.0.1/

[91] ——. (2010) Systems Modeling Language (SysML) Version 1.2 -
formal/2010-06-01. [Online]. Available: www.omg.org/spec/SysML/1.2/

[92] ——. (2011, June) UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems Version 1.1 - formal/2011-06-02.
[Online]. Available: www.omg.org/spec/MARTE/1.1/

[93] I. R. Quadri, A. Gamatie, P. Boulet, S. Meftali, and J.-L. Dekeyser,
“Expressing embedded systems configurations at high abstraction levels
with UML MARTE profile: Advantages, limitations and alternatives,”
Journal of Systems Architecture, vol. 58, no. 5, pp. 178 – 194, 2012.

[94] T. Arpinen, E. Salminen, T. D. Hämäläinen, and M. Hännikäinen,
“MARTE profile extension for modeling dynamic power management
of embedded systems,” Journal of Systems Architecture, vol. 58, no. 5,
pp. 209 – 219, 2012.

[95] A.G. Silva-Filho et al., “An ESL Approach for Energy Consumption
Analysis of Cache Memories in SoC Platforms,” International Journal
of Reconfigurable Computing, vol. 2011, pp. 1–12, 2011.

[96] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, “A SoC
Design Methodology Involving a UML 2.0 Profile for SystemC,”
in Proceedings of the conference on Design, Automation and Test
in Europe - Volume 2, ser. DATE ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 704–709. [Online]. Available:
http://dx.doi.org/10.1109/DATE.2005.37

171

www.omg.org/spec/SoCP/1.0.1/
www.omg.org/spec/SysML/1.2/
www.omg.org/spec/MARTE/1.1/
http://dx.doi.org/10.1109/DATE.2005.37

[97] ——, “A model-driven design environment for embedded systems,” in
Proceedings of the 43rd annual Design Automation Conference. New
York, NY, USA: ACM, 2006, pp. 915–918.

[98] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. De-
haene, Y. Vanderperren, and L. Ku, “UML for ESL Design - Basic Prin-
ciples, Tools, and Applications,” in IEEE/ACM Int. Conf. on Computer
Aided Design, Nov. 2006, pp. 73–80.

[99] E. Riccobene and P. Scandurra, “Weaving executability into UML class
models at PIM level,” in First European Workshop on Behaviour Mod-
elling in Model Driven Architecture (BM-MDA). Enschede, The Nether-
lands: CTIT Workshop Proceedings Series, 2009, pp. 10–28.

[100] F. Mischkalla, D. He, and W. Mueller, “Closing the gap between UML-
based modeling, simulation and synthesis of combined HW/SW sys-
tems,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, march 2010, pp. 1201 –1206.

[101] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P.
Diguet, “A co-design approach for embedded system modeling
and code generation with UML and MARTE,” in Proceedings of
the Conference on Design, Automation and Test in Europe, ser.
DATE ’09. 3001 Leuven, Belgium, Belgium: European Design
and Automation Association, 2009, pp. 226–231. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1874620.1874674

[102] Sparx Systems, “Visual Modelling Platform,” Oct. 2011. [Online].
Available: http://www.sparxsystems.com/products/ea/

[103] Jacquard, “ROCCC 2.0,” Oct. 2011. [Online]. Available: www.
jacquardcomputing.com/roccc/

[104] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A High-Level
Synthesis Framework For Applying Parallelizing Compiler Transforma-
tions,” in 16th Intl. Conf. on VLSI Design. IEEE, 2003, pp. 461–467.

[105] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S. Vas-
siliadis, “DWARV : Delftworkbench automated reconfigurable VHDL
generator,” in Intl Conf on Field Programmable Logic and Applications.
IEEE, 2007, pp. 697–701.

[106] Nallatech, “DIME-C,” Oct. 2011. [Online]. Available: www.nallatech.
com/Development-Tools/dime-c.html

[107] Mentor-Graphics, “CatapultC,” Oct. 2011. [Online]. Available: www.
mentor.com/esl/catapult/overview

172

http://dl.acm.org/citation.cfm?id=1874620.1874674
http://www.sparxsystems.com/products/ea/
www.jacquardcomputing.com/roccc/
www.jacquardcomputing.com/roccc/
www.nallatech.com/Development-Tools/dime-c.html
www.nallatech.com/Development-Tools/dime-c.html
www.mentor.com/esl/catapult/overview
www.mentor.com/esl/catapult/overview

[108] Xilinx. (2012, Nov.) Vivado Desing Suite. [Online]. Available:
http://www.xilinx.com/products/design-tools/vivado/index.htm

[109] Virginia et al., “An empirical comparison of ANSI-C to VHDL compil-
ers : SPARK, RORCC and DWARV,” in Anual Workshop on Circuits
Systems and Signal Processing ProRISC, 2007, pp. 388–394.

[110] B. D. Technology, “The AutoESL AutoPilot High-Level Synthesis Tool,”
Tech. Rep., 2010.

[111] J. Gaisler, “A structured VHDL design method,” in Fault-tolerant
Microprocessors for Space Applications. Gaisler Research, 2004, pp.
41–50. [Online]. Available: http://www.gaisler.com/doc/vhdl2proc.pdf

[112] ESA, “European Space Agency VHDL - www.esa.int,” Oct.
2011. [Online]. Available: http://www.esa.int/TEC/Microelectronics/
SEMS7EV681F 0.html

[113] J. Gaisler. (2011, Oct.) A structured VHDL Design Method. [Online].
Available: http://www.gaisler.com/doc/structdes.pdf

[114] Xilinx. (2011, Oct.) Platform Studio and the Embedded Development
Kit (EDK). [Online]. Available: http://www.xilinx.com/tools/platform.
htm

[115] M. Kulich, J. Chudoba, K. Kosnar, T. Krajnik, J. Faigl, and L. Preucil,
“SyRoTek-Distance Teaching of Mobile Robotics,” IEEE Transactions
on Education, vol. 56, no. 1, pp. 18 –23, feb. 2013.

[116] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown
orientations,” in Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 1, 1999, pp. 666 –673 vol.1.

[117] J. Y. Bouguet, “Camera calibration toolbox for Matlab,” 2008. [Online].
Available: http://www.vision.caltech.edu/bouguetj/calib doc/.

[118] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: ele-
ments of reusable object-oriented software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[119] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. Webb
Williams, and K. A. Yelick, “The Landscape of Parallel Computing
Research : A View from Berkeley,” University of California at Berkeley,
Tech. Rep., 2006. [Online]. Available: www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.html

173

http://www.xilinx.com/products/design-tools/vivado/index.htm
http://www.gaisler.com/doc/vhdl2proc.pdf
http://www.esa.int/TEC/ Microelectronics/SEMS7EV681F_0.html
http://www.esa.int/TEC/ Microelectronics/SEMS7EV681F_0.html
http://www.gaisler.com/doc/structdes.pdf
http://www.xilinx.com/tools/platform.htm
http://www.xilinx.com/tools/platform.htm
http://www.vision.caltech.edu/bouguetj/calib_doc/.
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

	Introduction
	Motivation
	Research goal
	Outline of the thesis

	Embedded systems using processors and ICs: ExaBot, a new mobile mini-robot
	Introduction
	Co-Design Flow
	Goals Specification. Body, locomotion and sensors definition
	Partition in subsystems
	Design Refinement & Testing of each subsystem
	Subsystems integration & Testing
	Final mounting

	Case Study: ExaBot development
	Goal Definition
	Body, sensors and locomotion definition
	Partition in Subsystems
	Subsystem Refinement: Motor Control
	Subsystem Refinement: Sensor Control
	Subsystem Integration
	Subsystem Integration: Communication
	Subsystem Integration: Programming
	Subsystem Integration: Power
	Subsystem Integration: Design and Test of the final PCB
	Final Mounting

	Applications
	Research: Autonomous visual navigation
	Outreach
	Undergraduate Education

	Publications
	Conclusions

	Embedded Systems using FPGAs: Real-time hotspot detection
	Introduction
	What is an FPGA?
	Why are FPGAs of interest?
	What are FPGAs used for?

	FPGA Basic Architecture
	Logic Blocks
	Routing Matrix & Global Signals
	I/O Blocks
	Clock Resources
	Embedded Memory
	Multipliers, Adders, DPS blocks
	Advanced features
	The complete picture

	Design Flows for FPGA
	Architecture Phase
	Implementation Phase
	FPGA flows comparison

	Case Study: Real time hot spot detection using FPGA
	Requirements and Specification
	Architecture
	Implementation
	Solution sizing
	Experiments and Results

	Conclusions

	A new co-design methodology for processor-centric embedded systems in FPGAs: Vision-based multiple robot localization
	Related Work
	Vision-based multiple robot localization
	Co-designed FPGA solutions for image processing algorithms related to robotic localization
	High level modeling and high level synthesis

	Methodology
	OOP Design
	C++ Implementation and Testing
	Software Migration, optimization and HW/SW partition
	Hardware translation, testing and integration

	Multiple Robot Localization
	Method overview
	Image rectification
	Position estimation
	Orientation calculation
	Robot identification

	Hardware/Software co-designed solution
	OOP Design
	C++ Implementation and Testing
	Software Migration, optimization and HW/SW partition
	Hardware translation, testing and integration

	Acceleration, area and power consumption results and analysis
	Acceleration
	Area
	Power and Energy consumption
	Overall analysis

	Conclusions

	Conclusions
	Embedded systems using processors and ICs
	Embedded systems using FPGAs
	A new co-design methodology for processor-centric embedded systems in FPGA-based chips
	Publications
	Future work

	Appendices
	Appendix Exabot Schematics and PCB

