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Abstract. This work presents the partial results obtained during the
development of a system for local Simultaneous Localization and Map-
ping (SLAM) using a stereo camera. We follow the parallel tracking and
mapping spirit that has become a standard in the community, and divide
the computation into two threads (PTAM). Our experiments with this
system show its real-time performance and the accuracy of the estimated
metric maps. The main contribution of this work is the introduction
of the stereo constraints in a local non-linear Bundle Adjustment and
tracking operations and the release of the code under the name of STAM
–standing for Stereo Tracking and Mapping– for its use as a basic local
feature-based stereo SLAM.
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1 Introduction

SLAM, standing for Simultaneous Localization and Mapping, is a key area for
the development of truly autonomous robotic systems. Basically, the goal of
SLAM is the online estimation of the model of a scene and the robot trajectory
from the readings of a set of sensors and in a fully automated manner. Such
scene models, and the relative pose of the robot on them, are essential for the
robot to safely interact with the environment.

Since the birth of the problem in the 80’s ([1] is usually referenced as one
of the first SLAM papers), SLAM has become a classic problem and one of the
most studied in robotics. The literature on SLAM is huge and a complete review
of the literature is out of the scope of this work. But, as a brief and uncomplete
summary, some of the research lines have studied the use of several sensors –
laser, sonar, visual or RGB-D sensors–; efficient approaches for the estimation,
large mapping, semantic mapping, life-long mapping [2] [3] [4] [5].

In this work we focus on SLAM using visual sensors. [6] demonstrated that
the optimal –optimal meaning the one getting more information per processing
unit– approach to visual SLAM with the current hardware platforms was the
Parallel Tracking and Mapping (PTAM) algorithm of [7]. There, the SLAM
problem is partitioned into two threads with small communications between
them. A tracking thread that estimates for every frame the camera pose given
an estimation of the map; and a mapping thread that estimates for a reduced set
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of keyframes the keyframe poses and the map. PTAM has become the standard
technique for small-scale camera tracking and scene mapping where the most
recent research builds on.

The contribution of this work is the development of an algorithm for small-
scale camera tracking and scene mapping for stereo cameras. The main advan-
tages of this approach with respect to the monocular one are: create a real-scale
representation of the environment; the use of the left and right measurements
to improve the refinement performed by Bundle Adjustment during mapping
phase; initialize 3D points even during rotational movements only. We will call
our approach STAM, standing for Stereo Tracking and Mapping.

The rest of the work is structured as follows. Section 2 introduces the pre-
liminary concepts and notation. Section 3 describes the estimation of the pose
of the stereo camera. Section 4 describes the estimation of the map using stereo
and multiview constraints. Section 5 refers to the initialization of 3D points us-
ing the stereo constraint and also the support of the rest of the views. Finally, 6
shows the experimental results and section 7 presents the conclusions and lines
for future work.

2 Previous Concepts

In this section we introduce the notation we will use along the report.

Camera Pose ECW = [R | t] where R is a rotation matrix and t is a
translation vector.E is a transformation (belonging to the Lie Group, SE(3), the
group of rigid-body motions in 3D) which transform a point in world coordinates

frame xW =
[
xW yW zW 1

]>
to camera coordinates frame xC =

[
xC yC zC 1

]>
,

that is:

xC = ECWxW (1)

Motion Matrix noted with M , is a 4×4 matrix (belongs to SE(3)) which
represents the changes in camera pose by left-multiplication, ECW = MCECW

prev.
In Lie Groups, the motion matrix M could be represented by a six-vector
µ = (tx, ty, tz, θ

roll, θpitch, θyaw), where the first three elements correspond to
translation and the last three to rotation angles respectively. The motion vector
µ and motion matrix M are related by:

M = exp(µ) = e
∑6

j=1 µjGj (2)

here Gj with j = 1 · · · 6 are the group generator matrices. They result from the
partial derivatives of motion matrices with respect to the motion parameters
evaluated in µ = 0, that is, ∂M

∂µj
= Gj . For further information on Lie Groups

the reader is referred to [8].
Measurement noted with letter z, is the true 2D position that matches

with the projected 3D point on the camera’s image plane.
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Map Point noted with p, is an ordered pair
(
xW,d

)
which contains the 3D

point xW and its associated descriptor d.
Stereo KeyFrame is a stereo pair of images with the associated stereo

camera pose.
Map noted with m, is defined as the set of Map Points and the set of stereo

KeyFrames.

A point in camera reference frame, xC, projects into the image as:[
u
v

]
= CamProj

([
xC yC zC 1

]>)
(3)

To perform the projection, a pin-hole camera model is used:

CamProj
([
xC yC zC 1

]>) def
=

fu 0 u0
0 fv v0
0 0 1

 [I3 | 0]

xC

yC

zC

1

 =

[
fux

C

zC + u0
fvy

C

zC + v0

]
(4)

3 Camera Pose Tracking

In this section, the approaches used to localize the stereo camera given a map
are presented.

3.1 Features Extraction

In the literature, several image feature detection algorithms (such as SIFT,
SURF, FAST, STAR, ORB) and descriptor extractor algorithms (such as SIFT,
SURF, BRIEF, ORB) are presented. In this work, different Detector-Descriptor
combinations were tried, reaching the conclusion that the ORB feature detec-
tor and its descriptor gives good results providing a good trade-off between
computing speed and robustness, given that ORB is invariant to rotation [9].
Furthermore, to achieve scale invariance, features are extracted and described
over an 8-level scale pyramid.

3.2 Features Tracking

The process of map tracking consists in determining the projections on the cam-
era frames of the 3D static points (the map), based on a sequence of camera
poses. The problem here is to find the correspondences between the 2D projec-
tions and the 3D points at each camera pose. In order to accomplish this task,
at each step of the sequence, the following steps are performed:

1. Image frames from the stereo-camera pair are undistorted and rectified
2. The camera pose is predicted using a motion model
3. Left camera’s field-of-view is computed based on its predicted pose
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4. 3D-points inside the view frustum are projected
5. A search inside the neighborhood of each projection is performed in order

to find the correct match (using descriptors)
6. The matches resulting from previous step are used to update the camera

pose

First of all, the upcoming stereo frames are undistorted and rectified using intrin-
sic and extrinsic parameters. Then, a decaying velocity model is used to predict
pose of the camera [10]. Then, the view frustum is computed using the predicted
pose. All the 3D points which fall into the frustum are projected to the left
camera frame. It is important to note that only the left camera is tracked, this is
done because tracking with both cameras would render the system too slow. In
the next step, the detection of ORB points inside the projections’ neighborhoods
are performed. The size of each neighborhood is predefined as the 0.4% of the
image size, which means that for an image of 640×240 pixels, the neighborhood
will have 25× 25 pixels. In order to find the match between the projections and
the ORB key-points, their descriptors are compared. The last step, consist in
a refinement of the camera pose by minimization of the re-projection error. As
[7] proposes, ten iterations of the Gauss-Newton method are enough to perform
this task. To reduce the effect of outliers, an M-Estimator cost function is used.

3.3 Pose Update

To estimate the current camera pose ECW, it is necessary to find the motion
matrix MC, as proposed in [11], which satisfies

ECW = MCECW
prev (5)

where MC is the small motion in the camera frame and ECW is the previous
pose. To find MC, (10) is used to express its dependence on the motion vector
µ = (tx, ty, tz, θroll, θpitch, θyaw). Then, the Jacobian matrix J which describes
the effect of each element of µ on each element of the re-projection error∆zi(µ),
is calculated

Jij =
∂∆zi(µ)

∂µj
=

∂

([
û
v̂

]
i

− CamProj
(
exp(µ)ECW

prevx
W
i

))
∂µj

(6)

= −
∂CamProj

(
xC
i

)
∂xC

i

∂xC
i

∂µj
(7)

where,

∂CamProj
(
xC
i

)
∂xC

i

=

[
fu
zC 0 − fux

C

zC2

0 fv
zC −

fvy
C

zC2

]
(8)

and
∂xC

i

∂µj
= GjE

CW
prevx

W
i (9)
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The motion vector µ is found by solving the equation:

Jµ = ∆z(µprev) (10)

In order to do this, given a set S = {z1, . . . ,zN} of matched measurements, the
new value for µ is the obtained by minimizing an objective function as follows

µ′ = argmin
µ

∑
i∈S

ρσT

(
J iµ−∆zi(µprev)

σi

)
, (11)

where ρσT
(.) is Tukey’s robust function and σT is the robust standard deviation

estimate [12]. For each zj , the variance of the measurement noise is σ2
j = 22l,

where l is the pyramid level of the detected feature. The minimization in (11) is
performed using the Gauss-Newton method, as proposed in [7]. Tukey’s robust
function is used to reduce the effect of outliers.

4 Stereo Mapping

In this section we present the Stereo Mapping algorithm that uses the multiple
view and stereo constraints to produce a sparse map of features and stereo
keyframes from the information in the stereo images. Our approach follows the
monocular system presented in [7] and extends it with the stereo constraints.

Bundle Adjustment is a particular case of least squares estimation, and con-
sists in the refinement of a set of camera poses (keyframes) and 3D points (the
map) by reducing the re-projection error of every point in every image. The prob-
lem can be stated as follows: given a initial set of camera poses {E1, . . . ,EN},
an initial set of 3D points x = {x1, . . . ,xM} and a family of measurement sets
{S1, . . . , SN} where each set Sj contains the measurement zij of the point i-th
in the j-th keyframe, the simultaneous estimation of the multiple cameras and
the point cloud is achieved solving

J

[
µ
x

]
= ∆z (µprev,xprev) , (12)

where ∆z (µ,x) = z − CamProj
(
exp(µ)ECWxW

)
is the reformulated re-

projection error where the dependence of the 3D point is included. In a way
analogous to the minimization used in Sec. (3.3), we must minimize the double
summation in (13)

{{µ′
2, . . . ,µ

′
N} , {x′

1, . . . ,x
′
M}} =

argmin
{{µ},{x}}

N∑
j=1

∑
i∈Sj

ρσT

J ji
[
µj
xi

]
−∆zi (µprev,j ,xprev,i)

σji

 ,
(13)

observe that µ1 is fixed during Bundle Adjustment refinement. This is because
the first keyframe is given zero uncertainty, as it defines the world reference
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frame. Given that the vector of parameters is divided in two groups (cameras

and points) the jacobian could be decompose as J =
[
∂∆z(µ,x)

∂µ
∂∆z(µ,x)

∂x

]
. So

the jacobian is computed as explained bellow:
The Jacobian’s coefficients corresponding to camera pose parameters have the

form given by (6). The Jacobian’s coefficients corresponding to points parameters
have the form:

J ji =
∂∆z(µj ,x

W
i )

∂xW
i

=

∂

([
û
v̂

]
i

− CamProj
(

exp(µj)E
CjW
prev xW

i

))
∂xW

i

(14)

= −
∂CamProj

(
x
Cj

i

)
∂x

Cj

i

∂x
Cj

i

∂xW
i

(15)

The first partial derivative is given by (8), the second partial derivative results
from

∂x
Cj

i

∂xW
i

=
∂
(
MCjE

CjW
prev xW

i

)
∂xW

i

= R. (16)

To this point, we have addressed the Bundle Adjustment technique for the one-
camera case. However it is possible to add a second camera that will become the
right component of the stereo pair. The relationship between the poses of the
left and the right cameras is constant, so we can obtain the pose of the right
camera from the left camera using (17)

ERW = ERLMLELW
prev. (17)

Now, we can use the right camera measurements to add stereo constraints to
Bundle Adjustment. These constraints are given by

zR = CamProjR
(
ERLMLELW

prevx
W
)
. (18)

Summing up, a 3D-2D point constraint is modelled with (4) in the left camera
but with the equation (18) in the right camera. The Jacobian rows related to
right measurements have the form

JR
ji =

∂∆zR(µj ,x
W
i )

∂xW
i

=

∂

([
ûR

v̂R

]
i

− CamProjR
(
ERL exp(µj)E

LjW
prev xW

i

))
∂xW

i

(19)

=

[
fu
zR 0 − fux

R

zR2

0 fv
zR −

fvy
R

zR2

]
RRLR. (20)

Observe if the stereo camera is rectified, then the transformation between cam-
eras is a pure translation in axis x (baseline) and the intrinsic parameters are
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the same, therefore yL = yR and zL = zR and (19) can be rewritten as follow

JR
ji =

[
fu
zL 0 − fux

R

zL2

0 fv
zL −

fvy
L

zL2

]
R. (21)

Finally the Jacobian can be expressed as

J ji =


fu
zL 0 − fux

L

zL2

0 fv
zL −

fvy
L

zL2

fu
zL 0 − fux

R

zL2

R. (22)

The Fig. 1 shows the constraints used by Bundle Adjustment.

Fig. 1: The constraints (measurements zji and extrinsic parameters ERL) used
by Bundle Adjustment to refine the points xi and left camera poses ELjW.

5 Map Points Initialization

In this section the method used for point initialization is presented. There are
two ways to create 3D points. One, uses the stereo pair, the other one uses
frames from different keyframes, in both case the same triangulation method is
performed. To compute 3D points, the following steps are performed:

1. Make a Mask to detect features which do not belong to current Map.
2. Compute Fundamental Matrix, F , given known Projection Matrices
3. Keep correct matches using First order geometric error (Sampson Distance).
4. Create 3D points using Linear triangulation method

Given a pair of frames and the poses where they have been taken, the points
inside Frustums are projected to images planes and binary masks are made
to avoid the creation of repeated 3D points. Using the mask, ORB features
are detected and their descriptor are computed. Then, a brute-force descriptor
matcher is used to match features from the first frame to the second one. For
each descriptor in the first frame, the matcher finds the closest descriptor in the
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second frame by trying each one. Then, first order approximation to geometric
error (Sampson Distance) for each xi ↔ x′i correspondences is computed.

(x′
iFxi)

2

(Fxi)21 + (Fxi)22 + (F>x′
i)

2
1 + (F>x′

i)
2
2

< threshold (23)

where (Fxi)
2
j represents the square of the j-th entry of the vector Fxi and

d(., .) is the euclidean distance. In this way, the points which satisfy (23) are
inlier matches and are triangulated. It is important to note that using an stereo
camera, it is possible to initialize 3D points by triangulation even during rota-
tional movements only, this is a great advantage with respect to mono camera
systems as [7].

6 Preliminary Experiments

The accuracy of the proposed method was tested by using a checker-board with
known dimensions. The reconstructed 3D coordinates were then compared to
the expected values. A Minoru stereo camera was used to record the sequences
for our experiments. The camera has a 60 mm baseline and was configured at a
resolution of 640 × 480 pixels at 15 fps. A laptop computer with an Intel Core
i5 ∼ 2.67 GHz processor with 4 GB of RAM, was used for running the imple-
mentation. With this hardware, a processing speed of ∼ 20 fps was achieved.
Table. 1 and Table. 2 show the performance of STAM tracking and mapping
phases respectively. Figure 2(a) shows the initialization of the new map points
from the stereo camera. Figure 2(b) illustrates the tracking of the map after its
expansion, the yellow marks correspond to predicted pose projections and the
red marks correspond to the measurements found in the current frame. Figure 3
exposes the point cloud; new points are depicted in green and old points are de-
picted in red. To check the accuracy of the method, eight distances between two

Table 1: tracking phase processing time.

Tracking 140 Points
Time in

ms

Undistortion and Rectification 9
Pose Prediction 0.04
Get Points (inside Frustum) 0.1
Points Projection 2
ORB KeyPoints Detection 9
ORB Descriptor Computation 9
Matching 2
Pose Update 20
Total ∼ 50

Table 2: Bundle Adj. processing time.
Map

Points Keyframes
Time in

ms

242 2 75.134
313 3 212.537
306 4 773.285
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(a) (b)

Fig. 2: (a) shows the point initialization (matching between left and right fea-
tures) from a keyframe. (b) shows the tracking after the Map expansion.

(a) (b)

Fig. 3: views of the reconstructed Map, (a) from side view, (b) from up view.

real points were used as ground-truth. Then, the euclidean distances between
the points reconstructed by the STAM were computed. The Table. 3 and Fig. 6
show the accuracy of STAM method. The average error was 2.27 mm.

Fig. 4: ground truth measurements.

Table 3: comparison between STAM
and the ground truth. All the mea-
surements are in cm.

Segment STAM
Ground
Truth

Absolute
error

A 8.29 8.6 0.31
B 8.58 8.6 0.02
C 8.74 8.6 0.14
D 11.33 11.44 0.11
E 12.68 12 0.68
F 12.17 12 0.17
G 12.02 12 0.02
H 10.98 11.35 0.37
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7 Conclusions and on-going work

In this work we presented a stereo SLAM system that we call STAM, standing
for Stereo Tracking and Mapping. This system estimates a local map of the
surroundings using a stereo camera and tracks the camera pose from the stereo
sequence in real-time. We incorporate the stereo constraints into the formulation
of the system, so the maps produced are at metric scale. Specifically, we use
both images of the stereo keyframes for map estimation and point initialization.
As a result, we are able to overcome the well-known initialization problem [13,
14] even with a stationary or a rotating camera. The preliminary experiments
presented in this work demonstrate the real-time performance of the proposed
methodology and the accuracy of the estimated metric map. As future work we
will perform experiments with real robots using a stereo rig with cameras that
support 30 fps of frame rate and can be synchronized between them. We plan to
improve the code in order to keep good real-time performance even for the case
of large maps.
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