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a b s t r a c t

Teach and Repeat (T&R) refers to the technology that allows a robot to autonomously follow a
previously traversed route, in a natural scene and using only its onboard sensors. In this paper
we present a Visual-Inertial Teach and Repeat (VI-T&R) algorithm that uses stereo and inertial data
and targets Unmanned Aerial Vehicles with limited on-board computational resources. We propose
a tightly-coupled relative formulation of the visual-inertial constraints that is tailored to the T&R
application. In order to achieve real-time operation on limited hardware, we reduce the problem
to motion-only visual-inertial Bundle Adjustment. In the repeat stage, we detail how to generate a
trajectory and smoothly follow it with a constantly changing relative frame. The proposed method
is validated in simulated environments, using real sensor data from the public EuRoC dataset, and
using our own robotic setup and closed-loop control. Our experimental results demonstrate high
accuracy and real-time performance both on a standard desktop system and on a low-cost Odroid
X-U4 embedded computer.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Mimicking a certain trajectory which has been previously
followed by a mobile sensor platform is a desirable robotic ca-
pability with clear applications; such as structure inspection,
environment monitoring or sample-return missions in planetary
exploration. This problem is commonly referred to as teach and
repeat (T&R) navigation.

Localization should be estimated from the robot’s internal
sensors in most of these potential application scenarios, as re-
liable external positioning (e.g., with GPS) might not always be
possible. Simultaneous Localization and Mapping (SLAM) is a
widely adopted technology for GPS-denied navigation [1], al-
lowing to estimate the robot pose for use in the control loop.
However, SLAM typically uses an absolute formulation, where
all robot poses and landmark positions are referred to a sin-
gle privileged reference frame (generally the initial robot pose).
This choice imposes global map consistency, which cannot be
generally guaranteed due to the inevitable drift of the pose es-
timation. Thus, most solutions expect frequent loop-detection
followed by global pose-graph relaxation, which becomes very
costly for large-scale scenarios and is in general not suitable for
long-distance navigation.

If the expectation of optimal path-planning is abandoned,
global map consistency is actually not required [2]. In other
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words, only local consistency is really necessary. In fact, it is pos-
sible to employ a relative formulation of the problem, where poses
are expressed as a transformation relative to other nearby pose
and landmarks are referred to the initial observing coordinate
frame. As a result, constant-time loop-closing becomes possible,
obtaining a more efficient approach [3].

The computational cost of the navigation solution is of par-
ticular importance for payload-limited hardware platforms, such
as small aerial robots. For this reason, relative localization ap-
proaches become an attractive solution. Regarding the sensor, the
visual-inertial combination is a very convenient choice for agile
and small robots, due to its low power demand, cost, size and
weight. Inertial data can capture brisk motions at high rate, while
visual data refer to external features and hence reduce drift.

Motivated by these two aspects, in this work we present
an efficient visual-inertial teach and repeat (VI-T&R) method
from stereo and inertial data. Our main contribution is a rela-
tive tightly-coupled keyframe-based formulation of the problem,
the first one in the literature to our knowledge. We also pro-
pose several adaptations for resource-constrained hardware and
demonstrate that our approach can be run in small aerial vehicles
with limited computational resources.

This paper builds upon our previous work [4], generalizing
the approach on such paper. Our estimated state now includes
a sliding window of the most recent robot poses. Furthermore,
in this work we estimate both the gyroscope and accelerometer
biases, whereas [4] only considered the former one. Finally, we
properly marginalize poses falling outside of the window instead
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of simply discarding past measurements. We also report an ex-
tensive evaluation of our proposal including experimental results
in simulation environments, in the EuRoC dataset, and in our own
robotic platform with closed-loop control.

2. Related work

The literature on T&R navigation has mostly focused on ter-
restrial robots equipped with either laser [5–7] or visual sen-
sors [8–13]. Works that address other types of locomotion such
as underwater [14] or aerial vehicles, as in our case, are scarcer.

An early work for the case of aerial vehicles is [15], where
a proof-of-concept T&R navigation system is presented. In this
work a downward-looking camera is used for pose tracking, based
on a planar floor assumption. In following work [16], the T&R
method is adapted for the case of fixed-wing aerial platforms.
However, the computation is done offline and requires a Graphics
Processing Unit (GPU). Moreover, closed-loop control and tra-
jectory planning are left as future work by the authors. More
recently, a fully working visual-only T&R method is proposed for
solving the emergency return of an aerial vehicle in [17]. The
proposed method is able to track the robot motion at high speeds
using a stereo camera mounted on an active gimbal. As before, to
achieve real-time operation, a GPU is employed to extract and
match image features.

A VI-T&R approach for aerial robots has been recently pro-
posed in [18], involving tightly-coupled and loosely-coupled es-
timators running together. Real-time performance is demon-
strated, but using a powerful Intel i7 processor. The authors of
this work state that, in order to navigate autonomously, loop clos-
ing and global Bundle Adjustment are needed between the teach
and repeat phases. Gao et al. [19] also present a VI-T&R system,
focusing on optimal trajectory generation for autonomous path-
following in small unmanned aerial vehicles. However, part of
the computation is delegated to an off-board laptop computer.
And also, they aim to achieve global map consistency based on
loop closure, which may not be possible during long-distance
operation and exploratory trajectories.

To address the problem of expensive global Bundle Adjust-
ment in SLAM, Sibley [20] proposed a Relative Bundle Adjustment
(RBA) framework where a relative formulation was used. Under
this approach, Bundle Adjustment operates over a graph of rel-
ative poses with landmarks specified in relation to these poses,
thus defining a manifold. The main benefit of this approach is that
a constant-time solution of the full maximum-likelihood estimate
can be obtained incrementally. Furthermore, loop closure also be-
comes constant-time, which is a considerable benefit in contrast
to methods based on an absolute formulation of the problem. This
framework was then used as the basis of a visual SLAM method
known as R-SLAM [3] targeting large-scale mapping.

The relative formulation of the localization problem has been
adopted at various degrees in several other works in the SLAM
literature. In [21], while following the usual approach of refer-
encing poses w.r.t the initial coordinate frame, the benefit of
expressing landmark positions relative to the observation frame
is highlighted. Moreover, authors argue in favor of not fixing the
initial pose of state estimation window (typically done to remove
the gauge freedom of the solution) for the purpose of avoiding
an unbounded growth of the uncertainty of the states, which
introduces linearization errors. Sola et al. [22] show the benefits
of the so-called landmark anchoring, consisting on referring land-
marks to the local reference frame at initialization. Similarly, De
Palézieux et al. [23] employ the concept of anchor nodes for
the same purpose, referencing all information to the initial pose
of the estimation window. Robocentric estimation approaches
(e.g., [24]) refer all landmarks and poses to the current robot

frame. In [25] visual-inertial estimation over a purely-relative
map is presented. The benefit of a relative formulation is also
identified by Eckenhoff et al. [26], where they propose to switch
to a relative formulation of the problem before marginalization
for the purpose of improving the estimator consistency. This same
idea is followed in ICE-BA [27].

However, while all these works follow a relative formulation,
the state optimization is solved by first transforming from a
relative representation to an absolute equivalent one within a
local frame. The motivation for such strategy is argued to be
performance or simplicity, as a fully relative approach is con-
sidered too expensive. Also, under relative schemes state un-
certainties are not usually considered. In terms of improving
performance, Moreno et al. [28] propose a generalization of RBA
which allows to express the problem with different degree of
locality, thus representing both fully absolute and relative cases
in the extremes.

In contrast to the aforementioned works in the literature, we
fully embrace the relative formulation of the problem and do
not resort to absolute representations in intermediate steps. This
allows us to handle state uncertainty within local coordinate
frames in a straightforward manner. Moreover, we present a
tightly-coupled approach for stereo visual-inertial estimation in
relative terms and demonstrate a performance that is sufficient
for closed-loop control, even on a low-power single-board com-
puter. From this algorithm we are able to build a robust VI-T&R
method for unmanned aerial vehicle navigation, running fully
on-board.

3. Method overview

The proposed T&R framework is based on a relative Visual-
Inertial Odometry (VIO). In the context of the T&R problem,
during the teach phase, VIO is employed to build a map of recent
robot poses and three-dimensional landmarks. This map takes the
form of a graph, with nodes corresponding to keyframes where
landmarks are initialized and edges representing the relative
transforms. During the repeat phase, this same VIO system runs in
parallel to a map-localization task, which relates the current VIO
map with the prior map built during the teach phase. A smooth
trajectory is then built from the nearby portion of the prior map
which is suitable for closed-loop path-following.

In the following sections we first define the VIO problem and
its solution by means of a maximum a posteriori (MAP) estimator.
Then, we describe the map-localization scheme employed dur-
ing the repeat phase of this framework. Finally, we present the
algorithm for trajectory generation and following.

4. Relative visual-inertial odometry

Under a relative formulation, the VIO state to be estimated
includes the current robot pose as well as the inertial states,
such as linear velocity, gravity and biases. In contrast to an
absolute formulation of the problem, the current robot pose is
not expressed by means of a transformation between a unique
coordinate system (the origin of the map, set during system
initialization) and the robot coordinate system, but as a small
transformation to a nearby keyframe. Similarly, all other variables
are expressed in their local coordinate system.

4.1. State definition

The state to be estimated is defined as a sliding-window
involving n recent robot poses and associated variables:

x =

{{
Ti+1
i

}
i=1...n−1 ,

{
vi, ĝi, b

g
i , b

a
i

}
i=1...n

}
(1)
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where

Ti+1
i =

[
Ri+1
i ti+1

i
0 1

]
∈ SE(3)

stands in general for the relative motion between two consecu-
tive keyframes denoted as i and i+1. In particular, n corresponds
to the most recent robot frame (not yet marked as keyframe).
Thus, Tn

n−1 denotes the motion between the last keyframe and the
current frame. Ri+1

i ∈ SO(3) represents the relative rotation, and
ti+1
i ∈ R3 the translation between the origins of the respective
local camera frames. vi ∈ R3 is the ith camera velocity in its
local frame, ĝi ∈ S2 is the normalized gravity vector of the ith
keyframe expressed in local frame coordinates, and bg

i , b
a
i ∈ R3

are, respectively, the gyroscope and accelerometer biases.
Note that, differently from other visual-inertial estimators, we

include the gravity direction as part of the state. Under the tradi-
tional absolute formulations for visual-inertial state estimation,
this variable is removed from the state by aligning the global
reference frame to the gravity direction during system initializa-
tion. The gravity vector in such global frame is reduced to the
canonical vector g =

[
0 0 −G

]⊤. But, as a consequence, the
rest of the variables in the state are tied to a gravity-aligned
absolute frame. In turn, by including the gravity vector in the
local camera frames we remove this dependence and all states are
relative. As an additional benefit, it becomes possible to explicitly
re-estimate the gravity direction during normal system operation
and thus avoid coupling gravity and absolute orientation errors.
In order to improve the observability of the state (in particular of
the accelerometer bias), we assume a known gravity magnitude
(G) and only optimize the gravity direction.

Notice that our state does not have gauge-freedom problems,
which for the absolute visual-inertial case corresponds to the four
degrees of freedom of the absolute 3D position and yaw angle.

Finally, observe that our state does not include the landmark
coordinates, as we triangulate them from the stereo pairs and do
not optimize their position. In other words, we perform motion-
only bundle adjustment. The reasons for this choice are to reduce
the dimensionality of the state and hence the computational
footprint of our VIO, and to avoid concurrent access to the state
by the tracking and local mapping threads. As a result, we are
able to run the VIO estimator in a single thread.

4.2. Maximum a posteriori estimation

The MAP estimation of our relative visual-inertial state x,
given a measurement vector z composed of q independent ob-
servations z = (z⊤

1 , . . . , z⊤
t , . . . , z⊤

q )
⊤ and some prior information

over the state p(x), is the vector x̂ that maximizes the prob-
ability function p(x|z). By applying Bayes’ rule and assuming
independent observations, p(x|z) can be written as:

p(x|z) =
p(z|x)p(x)

p(z)
=

q∏
t=1

p(zt |x)p(x)
p(zt )

The MAP estimate x̂ can be formulated as:

x̂ = argmax
x

q∏
t=1

p(zt |x)p(x)

where we omit the denominator p(z) =
∏q

t=1 p(zt ) as it does
not depend on x. We can rewrite the previous expression by
applying ln(·) as:

x̂ = argmin
x

ln

( q∏
t=1

p(zt |x)p(x)

)
= (2)

= argmin
x

q∑
t=1

ln(p(zt |x)) + ln(p(x)) (3)

Assuming Gaussian-distributed variables, the MAP state esti-
mation is:

x̂ = argmin
x

q∑
t=1

ht (x) ⊟ ẑt
2
Ω t

+
x ⊟ x̌

2
Ωx

where zt = ht (x) ⊞ w represents the measurement model,
with w ∼ N (0,Ω−1

t ), and x ∼ N (x̌,Ω−1
x ) represents prior

information. Note that we use the generic operators ⊞ and ⊟,
which allow us to operate with variables on a manifold. Finally,
we can write the previous expression in a more compact form as:

x̂ = argmin
x

r∑
u=1

∥eu(x)∥2
Ωu

= argmin
x

c(x) (4)

where eu(x) is the error corresponding to the observation zu
and c(·) is the total cost function, composed of the sum of the
individual squared residuals.

In particular, for our visual-inertial state estimation, the cost
function is composed of three terms

c(x) =

n∑
i=1

∑
k∈Ki

eVi,k2(QV
i,k)

−1 +

n∑
i=1

eIi2(QI
i )

−1 +
eP2(QP )−1

(5)

eVi,k is the visual residual that corresponds to the observation
of landmark ℓk from the ith keyframe (where n is the number
of keyframes and Ki the set of landmark indices observed from
keyframe i), eIi is the inertial residual corresponding to the motion
from keyframe i to keyframe i + 1, and eP the residual related
to prior information coming from the marginalization of previ-
ous states. QV

i,k, Q
I
i ,Q

P are the covariance matrices of the noise
associated to each observation type.

4.2.1. Visual residual
The visual residual is the stereo reprojection error, i.e., the

geometric distance between a landmark projection and its cor-
responding image feature, on both left and right images.

In our relative formulation, we identify the kth landmark of
the map as jℓk ∈ R3, where its coordinates are expressed in frame
j. When initializing a new landmark, frame j will correspond to
the frame of the left camera of the stereo pair used to triangulate
its position. On the other hand, the left–right image feature pair
detected in image frame i which matches the image projection of
landmark jℓk in i is denoted as yi,k ∈ R4. The visual residual is
then defined as:

eVi,k = π

(
g
(
Tj
i,

jℓk

))
− yi,k (6)

where g transforms jℓk to the reference frame of the left camera
of the ith frame:

g
(
Tj
i,

jℓk

)
=

[1 0 0 0
0 1 0 0
0 0 1 0

]
Tj
i

[
jℓk
1

]
=

iℓk

and π : R3
→ R4 is the stereo-projection function:

π (iℓk) =

⎡⎢⎣fu 0 cu 0
0 fv lcv 0
fu 0 cu −fub
0 fv cv 0

⎤⎥⎦ 1
z

[
iℓk
1

]



4 M. Nitsche, F. Pessacg and J. Civera / Robotics and Autonomous Systems 131 (2020) 103577

where iℓk = [x, y, z, 1]⊤, b is the stereo baseline, and fu, fv, cu, cv
are the intrinsic parameters of rectified stereo camera pair. Note
that since the image rectification process is not perfect, vertical
coordinates of the image feature yi,k in each camera may differ
slightly and thus we include both in (6).

Finally, to obtain Tj
i, we compose the chain of relative trans-

forms from keyframe i to j as

Tj
i = Ti+1

i Ti+2
i+1 . . . Tj

j−1 (7)

This chain might involve transforms which are not actively es-
timated anymore (i.e. they have been already marginalized). For
these, we use their last estimated value before marginalization.

The covariance matrix associated to the visual residual is
defined as:

QV
i,k =

iYk + JπR
j
iΛkRi ⊤

j J⊤π (8)

where iYk = σ 2
f I4×4 relates to the noise of the stereo observation

yi,k, Jπ is the Jacobian of the projection function π : R3
→ R4,

Rj
i is the accumulated rotation from i to j and jΛk ∈ R3×3 is the

covariance matrix of landmark jℓk (see Section 4.4.1). Notice that,
Yi,k models the noise relative to feature extraction and matching
in the current frame i, while JπR

j
iΛkRi ⊤

j J⊤π refers to the projection
of the triangulation uncertainty Λk from its original coordinate
frame j to the observation frame i. Since landmark positions are
not re-estimated in the proposed approach, it is beneficial to
consider their uncertainty during minimization [10,29], which
will be ultimately reflected in the uncertainty of the estimated
states.

4.2.2. Inertial residual
Our inertial residual between keyframes i and i + 1, based on

the preintegration described on Forster et al. [30], is

eIi =

[
e∆Ri e∆vi e∆pi ebgi ebai eĝi

]⊤

where each of the individual errors are as follows:

e∆Ri =

log

((
∆R̃i+1

i (b̄g
i ) exp

(
∂∆R̄i+1

i

∂bg δbg
∧
))⊤

Ri+1
i

)∨

e∆vi = (Ri+1
i vi+1 − vi) − Gĝi∆t−

−

(
∆ṽi,i+1(b̄

g
i , b̄

a
i )+

+
∂∆v̄i,i+1

∂bg δbg
+

∂∆v̄i,i+1

∂ba δba

)
e∆ti = ti+1

i − vi∆t −
1
2
Gĝi∆t2−

−

(
∆p̃i,i+1(b̄

g
i , b̄

a
i )+

+
∂∆p̄i,i+1

∂bg δbg
+

∂∆p̄i,i+1

∂ba δba

)
ebgi = bg

i+1 − bg
i

ebai = ba
i+1 − ba

i

eĝi = log
(
ĝi − Ri+1

i ĝi+1
)∨

The first three errors e∆Ri , e∆vi and e∆pi refer to the agree-
ment between the estimated relative rotation, velocity and trans-
lation and the preintegrated inertial measurements between

keyframes i and i + 1. The preintegration of the IMU measure-
ments between the discrete time instants when such keyframes
where captured, Ki and Ki+1, is as follows

∆R̃i+1
i (b̄g

i ) =

Ki+1−1∏
k=Ki

exp
(
ω̃k − b̄g

i ∆t
∧
)

∆ṽi,i+1(b̄
g
i , b̄

a
i ) =

=

Ki+1−1∑
k=Ki

∆R̃k
i (b̄

g
i )
(
ãk − b̄a

i

)
∆t

∆pi+1
i =

Ki+1−1∑
k=Ki

(
∆vi,k∆t+

+
1
2
∆R̃k

i (b̄
g
i )
(
ãk − b̄a

i

)
∆t2

)

(9)

where ω̃k and ãk are the measurements from the gyroscope and
accelerometer respectively.

As the gyroscope and accelerometer biases bg and ba are
initially unknown and drift over time, they have to be estimated.
In order to account for the effect of these changes on the preinte-
grated terms from Eq. (9), Forster et al. [30] formulates them as a
function of bg and ba and applies first order corrections ( ∂

∂bg δbg

and ∂
∂ba δb

a) during minimization.
In contrast to Forster et al. [30], we do not need to compute

the relative transform from keyframe i to i + 1, as it is directly
estimated as Ti+1

i in our state. Velocities, positions and gravity
are also referred to their local frames, which further simplifies
the residual definitions. Also, we include rĝi related to the gravity
direction, which models the expected consistency between its
change between keyframes i and i + 1 and the corresponding
orientation change Ri+1

i during that interval.
The covariance matrix QI for the inertial residual is computed

incrementally during integration as shown in [31]. For the gravity
residual term, we simply use a very low uncertainty value in
order to express a strong constraint.

4.2.3. Prior residual
We include a third residual term in our cost function, that

corresponds to a prior in the underlying MAP estimation. This
residual takes the following formeP2(QP )−1 =

x ⊟ x̂
2
(QP )−1 (10)

modeling a Gaussian prior N (x̂,QP ) on the state. In practice there
will be different factors connected to individual variables which
compose the complete state x, such as the first gravity vector and
bias terms of the estimation window.

A generalization of this residual is also included which corre-
sponds to the result of marginalization process and will take the
following form:eP2 =

Am(x ⊟ x̂) + bm
2 (11)

where, again, this residual may not necessarily be defined over
the whole state x but over the subset affected by marginalization
(known as the Markov blanket). In Appendix B we show how to
arrive to the previous expression and how Am, bm, x̂ are obtained.

4.3. Local parametrizations

Following recent approaches [32], in our VIO we optimize
variables in their local parametrizations. In the following sections
we detail the parametrization of relative transforms as well as of
the gravity direction vector and define the appropriate operators
and their Jacobians.
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4.3.1. Transform parametrization
We optimize relative transforms in their corresponding tan-

gent space, in minimal coordinates. In particular, we choose the
right ⊞ and ⊟ operators [32], which is consistent with the major-
ity of related works:

T ⊞ δ = T exp
(
δ∧
)

T1 ⊟ T2 = log
(
T−1
2 T1

)∨
where exp and log are, respectively, the exponential and loga-
rithmic maps for SE(3). Jacobians of these operators with respect
to the perturbations in minimal coordinates can be obtained by
applying the chain rule (see Appendix C).

Since we are interested in obtaining not only the maximum-a-
posteriori (MAP) estimates but also their uncertainty, we model
transforms as Gaussian variables T with:

T = T̄ exp
(
δ∧
)

(12)

where T̄ ∈ SE(3) is the mean transform and δ ∈ R6
∼ N (0,Σ )

is a local perturbation. To operate with uncertain transforms,
we follow the pose composition, inversion and point transforma-
tion defined in [33]. However, since Barfoot [33] employs a left-
perturbation model for uncertain poses, we perform the required
adaptations to follow the right-perturbation model of Eq. (12), as
presented in Appendix A.

4.3.2. Gravity vector parametrization
In this framework, the gravity vector direction is naturally

expressed as an element of R3. However, direction (unit) vec-
tors belong to the S2 manifold, which has only two degrees
of freedom. As S2 does not form a Lie group, we follow the
parametrization proposed in [34] which we briefly add here for
completeness1.

Given two unit vectors ĝi =
[
xi yi zi

]⊤
∈ R3, i ∈ 1, 2 and a

local perturbation δ ∈ R2, the ⊞ and ⊟ operators are defined as:

ĝ1 ⊞ δ = Rĝ1 exp(δ)

ĝ2 ⊟ ĝ1 = log(R⊤

ĝ1
ĝ2)

The exponential and logarithmic mappings are defined as fol-
lows

exp(δ) =

[
cos(∥δ∥)
sinc(∥δ∥)δ

]

log
[

w

v

]
=

⎧⎨⎩atan2(0, w)e1 v = 0
atan2(∥v∥ , w)

v
∥v∥

v ̸= 0

where e1 = [1 0]⊤ is the first unit vector, w ∈ R, v ∈ R2 and

Rĝi =

[ xi −r 0
yi xi cosα − sinα

zi xi sinα cosα

]
,

α = atan2(zi, yi), r =

√
y2i + z2i

4.4. Initialization

In order to bootstrap our visual-inertial state estimator, it is
necessary to address the initialization of its different parts, as
some of them will not be observable until enough observations
have been gathered. Our initialization process will start with
a window size of n = 2, where a visual-only estimation will
be first performed, for the purpose of initializing the inertial
states (velocity, gravity and IMU bias terms), after which full VIO
estimation is initiated.

1 Note that [34] erroneously defines r =
√
x2 + z2

4.4.1. Landmark initialization
For landmark initialization we employ stereo triangulation.

First, salient image features are extracted in the left and right
images and matched by nearest-neighbor search using binary
descriptors. In general, during keyframe creation, previously seen
landmarks are not refined (and used for camera tracking in-
stead) and only unseen ones are instantiated. Since the stereo
image-pair is already rectified, stereo correspondences are only
sought in adjacent image rows (i.e. along the epipolar lines). This
accelerates the search and further reduces false positives.

Left–right feature positions (xl, yl) and (xr , yr ) of successful
stereo matches are then used to triangulate the landmark position
ℓ in the left camera coordinates. We obtain the landmark covari-
ance matrix Λ ∈ R3×3 by linear propagation of the triangulation
function π−1

: R3
→ R3:

π−1(
[
xl xr yl

]⊤) =
b
d

[
xl yl 1

]⊤
d = xl − xr

where we only consider the vertical coordinate of the feature in
the left camera for simplicity. The landmark covariance is then:

Λ = Jπ−1Y(Jπ−1 )⊤

where

Jπ−1 =
b
d

⎡⎢⎢⎢⎢⎣
−

xr
d

xl
d

0

−
yl
d

yl
d

1

−
1
d

1
d

0

⎤⎥⎥⎥⎥⎦
and Y = σf I3×3 is the covariance matrix of the noise related to
feature extraction and matching.

4.4.2. Inertial states initialization
With the initial keyframe and its set of 3D landmarks, for sub-

sequent stereo pairs and IMU measurements we run a visual-only
estimation followed by a simplified visual-inertial estimator with
some fixed states. We address initialization as a visual-inertial
alignment problem, similarly to Lin et al. [35].

The visual estimator uses stereo residuals eV in the cost func-
tion and a state composed only of the relative transforms Ti+1

i .
After this, a second estimator is run with the full state and it is
initialized in two stages: first, vi, ĝi, b

g
i are estimated leaving Ti+1

i
fixed (with the value from the previous visual estimator) as well
as ba

i which is set to zero. During this stage, the preintegrated
velocities ∆vi,i+1 and translation ∆pi,i+1 are omitted in e∆vi and
e∆ti which allows vi to be estimated from visual observations
alone and the IMU states to be initialized. From the first and
second keyframes, bg is initialized and kept fixed in the second
stage, where ba

i initial value is estimated. As sensor excitation
may not be enough to achieve observability, a zero-mean prior
over ba

0 is introduced.
Initialization is completed after a user-defined number of

keyframes. While it would be more appropriate to measure state
convergence before finishing initialization, since we introduce
keyframes only after certain angular or linear motion, this process
works in practice. Our stereo setup simplifies the initialization, a
monocular one would require richer motions before the scale and
the inertial states converge.

4.5. Tracking

The camera pose is tracked as follows. Every time a new stereo
pair is captured, feature extraction, description and stereo match-
ing is performed. Successfully stereo-matched features are then
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matched against a set of landmark candidates that are expected
to be visible from the current camera pose. For details on this
active matching approach see Section 4.5.1. These landmark-to-
feature correspondences are then inserted into the optimization
as visual factors. Furthermore, as IMU measurements arrive, they
are stored in a buffer (using a separate thread, which loss of
IMU readings) as well as used to perform state prediction at IMU
rate (see Section 4.5.3). A buffer is used in order to handle the
reception delay of images with respect to IMU measurements,
since it is typical that the former will arrive later. After every
new image-reception, the IMU preintegration interval spanning
the current reference keyframe and the active frame is updated
using the corresponding IMU measurements stored in the buffer.
Tracking then proceeds by minimizing the cost in Eq. (5), which
results in an updated estimate for the state x that includes the
latest sensor data.

4.5.1. Active-matching
In order to track the robot w.r.t. to the map, the first step is to

determine a set of candidate landmarks to be matched. This set
is built from all landmarks triangulated from stereo pairs within
the estimation window. Notice that landmarks from marginalized
states are removed and cannot be re-visited again. Hence, the size
of the optimization window is a design parameter that should be
carefully chosen depending on the desired behavior: a smaller
window is optimized in less time but landmarks are removed
at high rates. This increases the chance of landmark duplication,
increasing also the errors associated to drift. Larger windows
have larger computational footprints, but the larger context in the
optimization window and larger landmark tracks lead to higher
accuracy.

The proposed feature-to-landmark matching strategy follows
an active approach where the camera pose is first predicted to
the current time frame based on the latest sensor data and then
both the pose and landmark position uncertainty are used to
obtain high-probability areas in the current image where feature
correspondences should be found. In contrast to many works
where this matching step only considers a fixed image region
around landmark projections, this active-matching approach will
naturally extend or reduce the search area size depending on
the actual pose uncertainty. Thus, matches are established un-
der a probabilistic setting, based on a given user-defined confi-
dence interval instead, which removes the need to hand-tune a
pixel-based search region size.

Given a set of candidate landmarks, active-matching then con-
sists in projecting their 3D position and covariance matrix into
left and right images. To obtain the 2D landmark projection from
its 3D coordinates, the same kinematic-chain procedure of Eq. (7)
is used. For covariance projection, Eq. (8) is extended to con-
sider the uncertainty of all transforms involved in the kinematic
chain, as in [10]. Thus, for a given landmark jℓ, referenced from
keyframe j, and associated covariance matrixΦ we wish to obtain
its 2D projection y̌ into frame i and its covariance Y̌, which is
obtained as:

y̌ = π

(
g
(
Tj
i,

jℓ
))

Y̌ = Jπ
(
AΣ j

iA
⊤

+ Rj
iΦRi

j

)
J⊤π

where

A =
[

Rj
i −Rj

i(
iℓ)∧

]
and Σ j

i is the covariance of Tj
i. For details of these operations

please refer to Appendix A.
From Y̌ and a given confidence interval (we choose 95%),

2D ellipses can be obtained for the left and right projections,

which encompass high-probability areas around each landmark
projection where matching features are sought. To efficiently
filter features enclosed into the uncertainty ellipses, we first build
a list of axis-aligned bounding-boxes from the ellipses. From
features inside the bounding-box, a match is established if its
image descriptor is close enough to the landmark’s last observed
descriptor and if the Mahalanobis distance between projection
and feature is less than a threshold, as in:

(y − ỹ)(Y + Ŷ)(y − ỹ)⊤ < χ2
4 (13)

with Y defined as in (8) and selecting the appropriate χ2
4 thresh-

old for the chosen confidence interval.

4.5.2. Keyframe creation
Keyframes are inserted periodically based on a set of con-

ditions. Whenever a new keyframe is introduced, new land-
marks (not matched to any candidate landmark) are initialized
as explained in Section 4.4.1.

A keyframe will be inserted if several thresholds on the motion
w.r.t. the most recent keyframe are exceeded, which ensures
sufficient sensor excitation between keyframes and also controls
the sampling density of the robot motion during the teach phase.
We also introduce a new keyframe when the ratio of successfully
tracked landmarks is below a given threshold. This ratio will be
low whenever the camera moves and observes the scene from a
different perspective and also whenever the camera rotates and
faces a new area.

While previous conditions are sufficient to trigger keyframe
insertion, we enforce a necessary condition of sufficient tracked
landmarks for the new keyframe: the sum of both successfully
tracked landmarks and new ones (from stereo-matched but not
map-matched features) should be a above a given number. This
ensures that the new keyframe will only be introduced when
sufficient visual information is present, which helps to achieve
stable state estimation.

If the sufficient but not the necessary conditions are met
(e.g., the robot moves into a poorly lit area with very few vis-
ible features), the system will operate solely on predicted state
information until all conditions are satisfied (i.e., the robot moves
again into a sufficiently illuminated area).

4.5.3. State prediction
The map-based tracking previously described produces a state

estimate at camera-rate. However, in order to control a highly dy-
namic platform a higher rate would be desirable. For this reason,
we generate a state prediction at IMU rate, based on the latest
inertial data. While in the long term these predictions will drift,
for relatively short periods of time they can be quite accurate.
Moreover, by considering the state covariance and appropriately
propagating it, it is also possible to know the covariance for
the predicted state. This is particularly useful for the previously
described active matching procedure.

The state prediction consists in obtaining new mean values
∗Tn

n−1,
∗vn, ∗ĝn of the most recent relative transform, linear ve-

locity and gravity direction respectively, based on the most re-
cent IMU readings ωt , at . In the general case (estimator fully
initialized), these predictions are produced as follows:
∗Tn

n−1 = Tn
n−1∆T

∗vn = ∆R⊤
(
vn + ∆v + ĝnG∆t

)
∗ĝn = ∆R⊤ĝn

where

∆T =

[
∆R ∆p
0⊤ 1

]
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∆R = exp
(
(ωt − bg

n)∆t∧
)

∆v = (at − ba
n)∆t

∆p = 1/2 ∆v∆t + vn∆t + 1/2 ĝnG∆t2

The corresponding covariances can be obtained by first-order
propagation, as detailed in Appendix A.

During initialization, the IMU cannot be used yet for state pre-
diction since bias terms are unknown. The prediction in this case
is simply defined as the same state as in the previous timestep,
with an artificially inflated time-dependent covariance. While
this is a very crude approximation, it is in practice sufficient for
this stage. Once bg is already estimated (but while ba is not), ∆R
can be used to predict the rotational component of Tn

n−1 and to
apply the corresponding rotation to vn and ĝn.

4.6. Marginalization

Our VIO is based on non-linear optimization over a sliding-
window, and whenever new variables are introduced to the state,
old ones are removed to keep a fixed window size. When vari-
ables are removed, measurement factors are also removed. If
these factors were simply discarded, the result of the estimation
would not be a MAP solution and would only consider short-
term information. Marginalization is used in order to obtain a
prior distribution over the remaining state while summarizing
the information of the deleted factors.

Our strategy consists in the marginalization of the oldest ve-
locity, gravity, biases and transform from x whenever the state is
augmented with a new keyframe. Marginalizing these states in a
relative VIO is relatively simple thanks to the choice of represent-
ing the local gravity at each keyframe. While this may seem re-
dundant, if a single common gravity vector were to be estimated
instead, it would need to be transformed repeatedly to a new
frame after its local frame is marginalized. This would require
the transformation of all already marginalized connected factors,
which in principle would require the ability to re-linearize past
information or employing another non-trivial approach.

In the context of non-linear state estimation, marginalized
residuals are summarized by means of a new factor that is built
using first-order approximations. This is known to be a source of
errors and might lead to inconsistent state estimates (i.e., there is
an artificial information gain). In particular, for long-term abso-
lute pose estimation, this approximation can cause problems. Un-
der a global formulation, it is usual to fix the initial pose in order
to address the inherent gauge freedom. This leads to an increasing
state uncertainty which accumulates these linear-approximation
errors over time.

Leutenegger et al. [36] approached this issue by not fixing
the initial pose. This was found to be more efficient by Zhang
et al. [37], while also requiring to apply a transformation to the
covariance matrices to obtain a geometrically meaningful result.
Alternatively, Eckenhoff et al. [26] show that by switching to a
relative representation before marginalization, the gauge freedom
is eliminated. In contrast to these works our state is directly
defined in relative terms, benefiting from the absence of gauge
freedom problem and allowing us a more natural representation
of the uncertainty.

5. Navigation

The repeat phase of the proposed VI-T&R navigation involves a
series of tasks. First, the robot needs to be localized with respect
to the prior map (built during teach phase). Then, a smooth
trajectory is generated using the keyframes of the teach map
that are closest to the current robot pose. Finally, a closed-loop
controller is used to follow this trajectory.

During the repeat phase, the same VIO module used during
teach is run. However, in this case the VIO map is not stored and
is only used to relate the current robot motion to the teach map.
The pose of the VIO module is used by the closed-loop controller,
while re-localization in the teach map is run independently at a
lower rate. This decoupling allows the robot to navigate even in
case of tracking loss with respect to the teach map. When the
robot is re-localized in the teach map after tracking loss, the use
of relative transforms prevent the estimated pose to suffer a large
correction. Such large corrections are typical in SLAM and can
have a negative effect in the control loop.

5.1. Reference map localization

Under the proposed relative formulation, localizing against
the reference map boils down to finding a relative transform Ti

i∗
between the latest VIO keyframe i = n − 1 and the closest
keyframe i∗ in the reference map. In this manner, the current
robot pose can be related to the reference map by chaining this
transform with Tn

n−1, the most recent relative transform of the
VIO state.

To obtain Ti
i∗ , we perform visual-only localization against the

reference map by minimizing the reprojection error between
observations in keyframe i and the corresponding landmarks
observed in keyframe i∗, using the following cost function:

J(x) =

mi∑
k=1

eVi,k2(QV
i,k)

−1 + (14)Ti
i∗ ⊖ Ťi

i∗

2
(QŤii∗

)−1
(15)

where Ťi
i∗ is a prior for the unknown transform. At the bootstrap-

ping of the repeat stage (and when tracking is lost), keyframe i∗
is unknown. We do place recognition using Bag-of-Words [38]
(BoW) descriptors, between the last keyframe i and the complete
set of keyframes in the teach stage. For this purpose, during the
teach phase, we store a BoW representation for each keyframe.
The prior Ťi

i∗ is obtained by PnP, robustified using RANSAC, from
the nearest-neighbor feature correspondences between the can-
didate keyframes extracted by BoW matching.

In subsequent steps, after a new keyframe i + 1 is inserted,
the prior is first updated to represent the pose of keyframe i +

1 w.r.t. keyframe i∗ as Ťi
i∗T

i+1
i . The keyframe (i + 1)∗ closest

to the keyframe i + 1 in the local map starting from i∗ is set
as the new map reference node. The new prior Ťj

(i+1)∗ is then
obtained as Ti∗

(i+1)∗ Ť
i+1
i∗ . Finally, Eq. (15) is used to obtain the

resulting Ti+1
(i+1)∗ . Landmark matches between i + 1 and (i + 1)∗

are established by projecting landmarks observed in (i + 1)∗ to
i + 1, using Ťi+1

(i+1)∗ , and running the active matching procedure
described in Section 4.5.1.

If a minimum number of correspondences fails to be estab-
lished, indicating a badly predicted prior or that an unmapped
area is being explored, relocalization based on BoW is triggered.
Until successfully relocalized, Ťi+1

(i+1)∗ is used as the localization
result (and thus, as input to the closed-loop controller), resulting
in purely predicted map-to-VIO pose.

5.2. Trajectory generation

Once localized with respect to the desired path, a target tra-
jectory is built to allow for smooth path following. Under a rel-
ative formulation, since the reference frame i∗ will be constantly
changing, the trajectory will need to be recomputed. This presents
the challenge of building a new trajectory without introducing
discontinuities which would impede smooth path following.
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To address this, we proceed as follows. We first build a lo-
cally Euclidean map of poses centered around i∗ by chaining the
corresponding relative transforms of the prior map. We then use
these poses and linear and angular velocities associated with each
keyframe (as estimated during the teach phase) as constraints
for a polynomial trajectory generator [39]. The trajectory is ob-
tained in the four-dimensional space of x, y, z and yaw, which
correspond to the controllable degrees of freedom of a multirotor
platform. For the desired arrival time at each keyframe we use
the travel time relative to the initial pose of this local map,
as observed during the teach phase. The trajectory built in this
manner should be very similar to the one followed during the
teach run. It is also possible to repeat the path faster by scaling
the desired arrival time or by tuning the aggressiveness of the
polynomial generator.

The resulting trajectory can then be sampled with a time cursor
t to obtain linear and angular position, velocity and acceleration
setpoints for a closed-loop controller. The difficulty here lies in
that, whenever the reference keyframe i∗ is redefined, t cannot
be used to sample the new trajectory, since t = 0 now repre-
sents a different pose. As the travel times between every pair
of keyframes of the path are known, we can obtain the new
cursor t ′ over the new trajectory as t − t0, where t0 is the arrival
time of the initial node of the new trajectory measured w.r.t.
the old trajectory’s initial node. As a result we effectively map
the previous cursor t expressed with respect to the previous
trajectory to the new cursor t ′ measured with respect to the new
trajectory.

Furthermore, in order to handle possible discontinuities be-
tween previous and current trajectories, we build the local map
from both past and future poses (up to a distance), which implies
that discontinuities would only appear at the extremes of the
trajectories. Since a new trajectory is computed after a new
keyframe is inserted, the trajectory around the cursor t is always
locally smooth.

5.3. Closed-loop control

From the map localization result and the generated trajectory,
we can compute a path-tracking error between the current robot
pose (referenced to the nearby portion of the map), velocity and
acceleration and the current setpoint and its derivatives sampled
from the trajectory. For the case of a multirotor platform, these
setpoints can be used as input to a proportional controller in
order to achieve the trajectory tracking. In this work, for the case
of experiments performed in simulation, we employ the position-
velocity tracking controller from Lee et al. [40]. For real-world
experiments, the position and velocity setpoints are fed into the
proportional controller of the internal autopilot, which combines
a PID position-velocity controller on top of a separate attitude
controller [41].

In terms of the relative formulation, the closed-loop control
presents a challenge since most controllers expect the current
state and setpoint as absolute quantities reference to a fixed
coordinate frame. From these, an error is internally computed and
used to generate the control outputs. Since the pose error can
be actually considered a relative transform between current and
desired pose and since the proposed framework directly obtains
this information, in this context it is more appropriate to employ
a controller which directly expects the control error, i.e. the
relative pose. For this reason, we modify the controller from Lee
et al. [40] to include this possibility. Similarly, we directly employ
the gravity vector expressed in the trajectory’s reference as part
of the controller equations, instead of the canonical vector which
would be used when working under a gravity-aligned reference
frame.

On the other hand, since performing these modifications to the
autopilot of the multirotor platform used for real-world experi-
ments can be particularly challenging, we opted for an alternate
option. Since the controller expects all estimates referred to the
absolute coordinate frame, we simply obtain an absolute pose by
combining the relative transforms estimated by the VIO module.
While this pose will drift over time, it will only be used to
compute an error with respect to the desired pose, which will
be similarly obtained. Thus, the control error will be in general
sufficiently accurate for closed-loop control.

6. Experimental results

In this section we analyze the performance of the proposed
VI-T&R navigation method. We first focus on the localization
accuracy of the relative visual-inertial estimation, and of the map-
based localization during the repeat phase. Then, we analyze the
computational cost of different steps of the VI-T&R method, par-
ticularly when run on a resource-constrained hardware platform.
Finally, we validate the complete VI-T&R navigation approach by
performing closed-loop control experiments both in simulated
and in real-world environments.

6.1. Experimental setup

In our experiments we use two distinct computing platforms:
a single-board Odroid XU-4 ARM computer, featuring eight cores
running at 2 GHz, and a modern desktop Intel i7-4790 computer,
with eight cores running at 3.6 GHz. The former is chosen since
it can be carried on board of a small multirotor vehicle, while
the latter allows to establish an expected performance baseline
without significant hardware constraints.

The VI-T&R system was implemented in C++ using the Robot
Operating System (ROS) framework, coupled with Sophus [42] for
Lie algebra calculations, OpenCV for feature extraction and image
processing and Ceres [43] for the non-linear solver. On the Odroid
computer, we employ an NEON optimized feature extraction and
description library [44].

While the framework allows different image feature detec-
tor and description algorithms to be used, we experimentally
found that Good Features To Track algorithm (GFTT) by Jianbo
Shi and Tomasi [45] detects robust features which can be tracked
longer while also being homogeneously distributed in the image.
Furthermore, it depends on a relative feature saliency threshold
instead of an absolute value (as most other detection algorithms)
which results in robustness to image contrast changes. The main
limitation to GFTT is that it is computationally expensive on
embedded platforms. For this reason, on the Odroid computer
we have chosen to use a NEON optimized implementation of
the FAST feature extractor. For feature description we chose the
ORB descriptor which can be computed efficiently. On the Odroid
computer we further simplify this computation by obtaining the
descriptor only along the upright image patch orientation, which
thus is equivalent to that of BRIEF algorithm but using ORB’s
descriptor pattern.

As a simulation tool we used the rotorS package for Gazebo
[46], choosing an AscTec Firefly hexacopter platform with a stereo
VI sensor, configured at 20 frames per second with a resolution
of 752 × 480 px and an IMU rate of 200 Hz. For real-world
experiments we employ a custom built quadrotor platform, based
on the Pixhawk autopilot, which carries the Odroid XU-4 com-
puter and a MyntEye stereo-camera which integrates an internal
Inertial Measurement Unit hardware-synchronized to the camera
clock. The MyntEye is configured to run at the same rate and
image-resolution as our simulated experiments.
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Fig. 1. Simulation environments.

6.2. VIO localization

In this section we evaluate the performance of our relative
VIO module. For this purpose, we run the VI-T&R system in teach
mode on the EuRoC MAV dataset [47]. This dataset contains sen-
sor data captured with an Astec Firefly hex-rotor equipped with a
visual-inertial sensor while flying in two different environments.

In order to analyze the VIO localization accuracy we measure
the relative pose error (RPE) [48] for increasing subsequence
lengths, up to a given distance. For each subsequence we compose
the relative transforms and compare the final pose with the
relative pose obtained from the dataset ground truth. We do not
report absolute pose errors, since it is of no relevance for T&R
navigation: T&R approaches require only local consistency within
the portion of the map used in the repeat phase. We choose a
maximum subsequence length of 4 m since this is a local area
of sufficient size to run map-based localization and trajectory
generation during the repeat phase.

We show experiments on the two platforms described in
Section 6.1, in order to assess the effect of limited computational
resources on real-time tracking. Our experiments were done in
real time: stereo pairs will be skipped if the computation for
the previous one did not finish. We also tested the case of non
hardware-accelerated GFTT/ORB on Odroid, to establish the im-
pact on tracking quality resulting from the use of the simpler
FAST detector.

For these (and all subsequent experiments) we have set an
estimation window of size n = 5 which was found to give a good
balance between tracking performance and estimation quality.

In Fig. 2 we show the results from this experiment. In general,
there is no significant loss on the tracking performance when it
is run on the Odroid XU-4 instead of the Intel i7. The biggest
differences can be observed in the V series of EuRoC, as these are
more challenging.

In terms of overall localization accuracy, we can observe a
relative translation error between 1% to 4%. While such errors
can be thought of as higher than some other VIO systems, it
should be highlighted that we are using a much simpler hard-
ware than those works, and our approach demonstrates real-time
closed-loop on-board control on a small aerial robot.

6.3. Bias and gravity estimation

To further assess the performance of the proposed VIO, we
also evaluate the accuracy of the IMU bias and gravity estimation.
We present two sets of experiments in teach mode. First, we run

the system on the EuRoC dataset (as in the previous section) and
compare the IMU bias estimated against the available ground-
truth. Second, since ground-truth gravity is not available for the
EuRoC dataset, we perform a series of simulations where both
bias and gravity can be evaluated. We use the rotorS frame-
work, that provides a realistic simulation of the IMU by including
appropriate IMU noise and bias drift.

From all of our experiments, we choose two subsequences of
both MH and V series of the EuRoC dataset as a representative
sample. Fig. 3 shows the estimation of the three components of
the accelerometer and gyroscope biases over time. Observe how
the estimation is close to the ground truth value, displayed as an
orange line. As before we overlay 3σ bounds from our uncertainty
estimation, to assess the consistency of the estimation.

Observe that the bias estimation converge, in general, to the
expected value within the 3σ uncertainty region. It should be
remarked that, for the V series, the convergence is slower and
in some cases it is not even reached (such as for accelerometer
bias for V1_01). Again, this difference can be explained by the
challenging conditions of this series of EuRoC sequences.

For our simulation experiments, we evaluate the bias estima-
tion accuracy as before, and also the components of the local
gravity vector. We performed these analysis using two different
simulations: a shorter one (68s) which includes varied motions in
different directions and rotations and a longer one (255s) which
mostly consists of long periods of approximately constant velocity
over long distances with only a few changes in motion direction.
The results are presented in Fig. 4.

Observe that in these experiments the bias is accurately esti-
mated and the estimated gravity follows closely the ground-truth
with low uncertainty. Moreover, the second simulated experi-
ment serves to verify the correct IMU bias terms even when
operating for longer periods of time where bias drift could be an
issue.

6.4. Map localization

In this section we analyze the results of localizing the robot
against a previously built map as it is performed during the repeat
phase. Specifically, we compare the estimated relative transform
between the active VIO map and the prior map built in the teach
phase against the ground-truth transform. For this experiment we
again used the EuRoC dataset, where we take advantage of the
partial overlap between different sequences of the dataset in the
two environments: we run VIO on one sequence in teach mode
and we run the repeat localization using a different sequence.
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Fig. 2. Relative Pose Error of VIO estimation Error measured on EuRoC dataset for Intel i7 and Odroid computers. Missing or out of range data signifies tracking
failure.

Since the EuRoC dataset sequences do not fully overlap (ie.
the robot sometimes goes over areas not visited during the teach
phase), this experiments also allow to analyze the ability of the
proposed method to handle large deviations with respect to the
teach sequences. In these cases, when a recent VIO keyframe
cannot be localized against a nearby map keyframe, the last
successful localization result (map-to-VIO relative transform) is
still chained with the VIO localization result from that point on.
Thus, during these exploratory periods, map-localization can be
considered only a prediction since it is not yet corrected with
recent visual information (i.e., a map match to current image
features).

In Fig. 5 we present the translation error for the VIO-to-map
relative transform, for two pairs of teach-repeat experiments
using pairs of EuRoC sequences with sufficient overlap. As in the
previous section, we perform the experiment on both hardware
platforms. We distinguish in these results measurements which

are obtained from successful map matches with the last VIO
keyframe (in green) from those which re-use last result and sim-
ply chain VIO tracking results (in red). Furthermore, we overlay
3σ uncertainty region to indicate the method confidence in the
result. It can be seen that for time periods where only a prediction
is obtained the uncertainty grows until relocalized to the map
when the error also drops again.

A number of observations can be done from these results.
First, we can see the translation error of the estimated relative
transform is generally within 5 to 10 cm for both hardware
platforms. When analyzing in closer detail, for the MH_01/MH_02
combination, at t = 30 the system running on Odroid XU-4 fails
to localize and the error is higher. Similarly, the error increases
between t = 40 and t = 50 in MH_04/MH_05 Odroid XU-4. In
any case, in both situations map tracking is quickly re-established
once relocalization is successful. For purely exploratory parts,
observe for example the results between times t = 40 to t = 60
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Fig. 3. Accelerometer and gyroscope bias estimation over time, measured over EuRoC dataset MH and V sequences. Orange line corresponds to ground-truth bias
value whereas blue corresponds to estimation (dark blue: mean value, light blue: 3σ uncertainty region).

and t = 75 to t = 85 in MH_01/MH_02. In both cases, map-
based localization is only predicted from VIO and uncertainty
thus increases accordingly while still maintaining a low error of
around 10 cm.

Another interesting case is the tracking failure at t = 45 for
the MH_04/MH_05 case, with subsequent relocalization at around
t = 55. Here the error does not only increases considerably, but
it is also outside the confidence region. When inspecting the cor-
responding timeframe in MH_05 we observe that it corresponds
to almost full darkness with only few distant visible objects.

In general, the results in this section indicate that map-based
localization is of sufficient accuracy for trajectory following in
real-time on an embedded platform such as the Odroid XU-4. Fur-
thermore, localization appears to be robust to several challenging
situations.

6.5. Computational cost

We report the running time of the main steps of our algorithm
in both hardware platforms and, as before, we include the case
of GFTT and hardware-accelerated FAST detector on Odroid XU-4.
We also measure times in both teach and repeat modes to analyze
the performance of the VIO task running alone (as done during
teach) and in series with the map-based localization (as done in
repeat).

Fig. 6(a) reports the average running time of the main steps of
the VIO task which involve: a) feature extraction and description
(on left and right images, which is performed in parallel), b)
active-matching (see 4.5.1), c) VIO map tracking , d) solver min-
imization and covariance computation, e) marginalization and f)
keyframe addition.

From this first result, we can observe that feature extraction
and solver are the most computationally demanding tasks. For
the GFTT case in particular, observe that there is approximately a
seven-fold increase in runtime between Intel i7 and Odroid X-U4.
On the contrary, we can also see that the hardware-accelerated
FAST algorithm running on Odroid X-U4 is not only faster than
GFTT on the same platform, but also on Intel i7. This is a signifi-
cant difference which results in a reduction of the total VIO time
of about 50%.

In general terms, the average frame rate of the VIO task
results in around 27 Hz for Intel i7 while for Odroid X-U4 it is
approximately 11 Hz and 6 Hz for FAST and GFTT respectively.

In Fig. 6(b) we report the complete tracking time for the VI-
T&R system in repeat mode. In this case, feature extraction and
VIO are those presented in 6(a) while the other steps involved
in repeat phase include tracking of the prior map and global
relocalization (see 5.1), the latter being run only when tracking
is not successful. For this case we see that the running time of
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Fig. 4. Accelerometer, gyroscope bias and gravity estimation over time, measured over simulated environments. Orange line corresponds to ground-truth value
whereas blue corresponds to estimation (dark blue: mean value, light blue: 3σ uncertainty region).

these extra steps is smaller than those of feature extraction and
VIO task. However, on Odroid X-U4, map-based localization cost
becomes significant when compared to the Intel i7 case. As a
whole, this amounts to an average tracking rate of 25 Hz for
Intel i7 and 9 Hz and 5 Hz for Odroid X-U4 with FAST and GFTT
detector, respectively.

Given a camera frame-rate of 20 Hz we can see that the
Intel i7, in average, would be capable of processing all frames
while the Odroid X-U4 would incur in a considerable image-
loss (around 50% for VIO). However, as we are not losing inertial
measurements and also maintain an IMU-rate state prediction,
we can still perform accurate estimation at high rate. Of course,
as the UAV moves faster and performs more aggressive motion,
image-tracking will incur in higher estimation errors and would
eventually fail. However, we did not encounter this problem in
practice.

6.6. Navigation

While previous experiments aim to verify that the VI-T&R
performance is sufficient for navigation in resource-constrained
UAVs, in this section we experimentally validate the accuracy in
repeating a previously taught trajectory. We perform these exper-
iments partly in simulation and partly on a real aerial platform.
Simulations allow us to focus on the VI-T&R system performance
against ground truth. Still, since simulations might not capture
all the detail of real-world scenarios and platforms (e.g., IMU
noise and realistic images) we include qualitative results on a real
platform to validate the system.

For the aforementioned experiments we first run our system
in teach mode while manually flying the aerial robot. Then, we
perform several passes in repeat mode. We report qualitative
views of all of our experiments, and quantitative assessment of
the path following errors for the simulation cases.

Fig. 7 shows our experiments, using the rotorS simulator.
We used different setups: outdoors environment included in
the simulator and tunnel_practice_1, tunnel_practice_2
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Fig. 5. Map-based localization error on EuRoC dataset. Green indicate successful
map-based localization while red correspond to predicted value based on
short-term VIO localization result. Shaded blue regions are 3σ uncertainty
bounds.

environments from DARPA’s Subterranean Challenge [49] support
package (see Fig. 1). For outdoorswe performed two inspection-
like runs where the robot flies around a building. For the other
scenarios we simply followed the tunnel in an arbitrary fashion
for a longer period of time. Thus, while the first case involves fast
motions and rich visual information the second involves long and
mostly straight motion in a self-similar environment.

When analyzing the performance of the trajectory following
experiments performed in simulation a maximum error of ap-
proximately 20 to 50 cm can be observed. Moreover, this error
does not change significantly when comparing the shorter and
longer sets of experiments. On the other hand, it is likely that by
improving the tuning constants of the position-velocity controller
included with the rotorS simulator this error could be reduced.
This is also evidenced by the fact that in the last two experiments
there is an initial control error in the y (longitudinal) direction but
not on the other two axis. In other words, the vehicle lags behind
the setpoint until it is able to eventually catch up.

For the real-world experimentation, we present in Fig. 8 the
perceived control error for each of the five repeat runs. In these
figures we shade the time interval where the robot is under con-
trol of the T&R system: since takeoff and landing maneuvers are
difficult to safely handle under autonomous operation without
GPS assistance we manually fly these portions of the path. Since
no ground-truth information is available for these tests, we show
external views of the robot during these experiments in Fig. 9
and Fig. 10, to aid in the qualitative analysis of the path-following
behavior.

With the obtained results we can indeed observe that the
robot is able to smoothly follow the trajectory under guidance
of the T&R method proposed in this work, running in real-time
on the embedded Odroid X-U4 installed on the aerial robot. It is
also possible to observe that there is some controller delay which
likely indicates better tuning of the low-level controller, which for
this experiment is part of the Pixhawk autopilot.

In more general terms, this experiment also demonstrates in
practice the ability to build a map by fusing visual and inertial
data on board a resource constrained hardware platform suitable
for small unmanned aerial vehicles as well as to solve both
localization against this map, trajectory generation and following.

7. Conclusions

We have presented a full VI-T&R system based on tightly-
coupled fusion of visual stereo information and inertial data,
suitable for small unmanned aerial robots in applications such
as 3D inspection or surveillance. The method was tested on the
challenging EuRoC dataset and demonstrated closed-loop perfor-
mance in simulation and in real-world experiments.

The resulting precision of the system running on the low-
power Odroid X-U4 computer was shown to be comparable to
that obtained with a more powerful Intel i7 computer which does
not suffer from frame-loss. By employing a relative formulation of
the localization problem and by seeking only local consistency,
we achieve a system capable of running at a rate of about 10 Hz
on the embedded computer when coupled with a hardware-
accelerated feature processing pipeline. Furthermore, we verified
convergence of inertial states under this formulation, which in-
volves distinguishing the gravity vector, and thus empirically
verify the observability of the problem.

In order to validate our claim of achieving real-time operation
suitable for UAV navigation we first test our system in simu-
lated environments consisting of both short and long-distance
navigation scenarios. We then performed experiments on a real
robotic platform with the system running fully on-board and
demonstrated path-following behavior of a previously learned
path.
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Fig. 6. Average running times of our VI-T&R, for Intel i7 and Odroid XU-4, for teach (using MH_01 EuRoC) and repeat (using MH_01 and MH_02 EuRoC).

Given the various components that conform the proposed
VI-T&R system, we can identify several streams of future work.
First, we wish to extend our relative VIO to support a map-
adjustment task which would potentially increase the accuracy
of the method and further reduce resulting pose uncertainty.
Second, since one of the main benefits of the relative formulation
is the ability to naturally represent loops in the underlying graph-
based map, we plan to add the ability for loop detection during
teach stage. This also opens the possibility to perform navigation
decisions over a network of paths, which further extends the
application scenarios of our approach. Finally, we consider intro-
ducing optimizations to the solver minimization and covariance
computation steps to further decrease computation time.
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Appendix A. Uncertain transform operations

In this section we obtain the appropriate definition for un-
certain pose composition, inversion and uncertain point transfor-
mation, following a right-perturbation model (see Eq. (12)). For
simplicity we obtain second order approximation of covariance
matrices.

A.1. Pose composition

Given two uncertain transforms T1, T2, we wish to obtain their
composition T = T1, T2. Applying definition (12) we have:

T1T2 = T̄1exp
(
ξ1

∧
)
T̄2exp

(
ξ2

∧
)

=

= T̄1T̄2exp
(
Adj

(
T̄−1
2

)
ξ1

∧
)
exp

(
ξ2

∧
)

= T̄exp
(
ξ∧
)

where Adj () is the adjoint of SE(3). Applying the Baker-Campbell-
Hausdorff formula [33], we can perform a second-order approxi-
mation to obtain the covariance matrix Σ of the transformation
T as:

Σ = E
[
ξξ⊤

]
≃

≃ E
[
ξ′

1ξ
′

1
⊤

+ ξ2ξ
⊤

2

]
≃

≃ Σ ′

1 + Σ 2 = Adj
(
T̄−1
2

)
Σ 1Adj

(
T̄−1
2

)⊤
+ Σ 2

where we used ξ′

1 = Adj
(
T̄−1
2

)
ξ1 as a shorthand.

A.2. Pose inverse

Given an uncertain transform T we wish to obtain its inverse:

T−1
=
(
T̄exp

(
ξ∧
))−1

= exp
(
−ξ∧

)
T̄−1

The corresponding covariance matrix is then:

Σ−1 = Adj
(
T̄
)
Σ Adj

(
T̄
)⊤

A.3. Point transformation

Given a homogeneous point x =
[

ϵ η
]

∈ R4, we model
its uncertainty by x = x̄ + Dζ where ζ ∈ R3

∼ N (0,Φ) is a
perturbation vector and D =

[
I 0

]⊤
∈ R4×3. In this case we

wish to obtain the result of transforming x by T:

Tx = T̄exp
(
ξ∧
)
(x̄ + Dζ) ≃

≃ T̄(I + ξ∧
+

1
2
ξ∧ξ∧)(x̄ + Dζ)

where we can apply the following property from Barfoot [33]:

ξ∧x = x⊙ξ

x⊙
=

[
ηI −ϵ∧

0⊤ 0⊤

]
resulting in

Tx ≃ T̄x̄ + T̄Dζ + T̄ξ∧x̄ =

= T̄x̄ + T̄Dζ + T̄x̄⊙ξ

where we also dropped the higher order terms. We can then write
the covariance matrix of the (inhomogeneous) transformed point
as:

Φ′
= D⊤

(
T̄x̄⊙Σ

(
T̄x̄⊙

)⊤
+ T̄DΦ

(
T̄D
)⊤)D =

=
[

R̄ −(R̄ϵ∧)
]
Σ

[
R̄⊤

−(R̄ϵ∧)⊤

]
+ R̄ΦR̄⊤

Appendix B. Marginalization

For the purpose of completeness, we here summarize the
equations underlying the marginalization process in the context
of the MAP estimation. Recall from Eq. (4) the we wish to obtain
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Fig. 7. Trajectory following experiments under simulation.
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Fig. 8. Trajectory following experiments in real-world conditions.

a solution to a minimization problem via Least-Squares. Due to
the non-linearity of c(x), this problem is solved iteratively as:

∆x̂ = argmin
∆x

∑
i

ei(x̂) + Ji(∆x̂)
2
Ω i

(B.1)

where

Ji =
∂ei(x̂ ⊞∆x)

∂∆x

⏐⏐⏐⏐
∆x=0

(B.2)

Each iteration involves obtaining a new estimate x̂+ from x̂−,
obtained in the previous step, applying the increment ∆x̂ as:

x̂+ = x̂− ⊞∆x̂ (B.3)

(B.1) can be solved by means of the following system of equa-
tions:(∑

i

J⊤i Ω iJi

)
∆x = −

∑
i

J⊤i Ω iei(x̂) (B.4)
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Fig. 9. External view during the teach phase of the experiment using experi-
mental aerial robot. In red we highlight the portion of the path that was later
autonomously repeated.

which can also be expressed as:

Λ∆x = −b (B.5)

We will define a partition of the complete state as x =

{xm, xb, xr}, where xm is the set of variables to be marginalized, xb
is theMarkov blanket of xm (the subset of xwith factors connected
to xm) and xr the rest of x which is not related to xm. We can
rewrite cost function c(x) as:

c(xm, xb, xr ) = cr (xb, xr ) + cm(xm, xb) (B.6)

As a result, Eq. (4) can be formulated as:

argmin
x

c(x) = argmin
xb,xr

(
argmin

xm
c(xm, xb, xr )

)
=

argmin
xb,xr

(
cr (xb, xr ) + argmin

xm
cm(xm, xb)

)
The goal of the marginalization is then to approximate the

right term (which depends on xm) from known values of xb. For
this purpose, we can apply a second-order Taylor approximation
over cm obtaining:

cm(xm, xb) ≃ cm(x̂m, x̂b) +

[
gm
gb

][
xm ⊟ x̂m
xb ⊟ x̂b

]
+

1
2

[
xm ⊟ x̂m
xb ⊟ x̂b

]⊤ [
Λmm Λbm
Λbm Λbb

][
xm ⊟ x̂m
xb ⊟ x̂b

] (B.7)

From the previous expression we can write xm as a function
of xb as:

xm = x̂m − Λ−1
mm(gm + Λ−1

bm(xb ⊟ x̂b)) (B.8)

Substituting this expression in (B.7), we arrive at the following
approximation for the minimization of cm:

argmin
xm

cm(xm, xb) ≃

argmin
xm

cmarg (xm, xb) = ζ + g⊤

marg (xb ⊟ x̃b)+

1
2
(xb ⊟ x̃b)Λmarg (xb ⊟ x̃b)⊤

where
g⊤
marg = g⊤

b − ΛbmΛ
−1
mmg⊤

m
Λmarg = Λbb − ΛbmΛ

−1
mmΛbm

(B.9)

The resulting cost function cmarg can then be included as part
of Eq. (4), where the new state will now only be x = {xb, xr}.

Fig. 10. External view of the aerial robot during the trajectory following
experiment. The line marked in red corresponds to the approximate expected
path to be followed as defined during teach phase.

Since cmarg contains both linear and quadratics terms, we can
rewrite it as a single quadratic factor:

cmarg (xb) =
1
2

Am(xb ⊟ x̂b) + bm
2
2 (B.10)

where

A⊤

mAm = Λmarg

A⊤

mbm = gmarg
(B.11)

The equivalence of minimizing (B.10) and (B.11) can be shown
as follows:

cmarg (xb) =
1
2

Am(xb − x̂b) + bm
2
2 =
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=
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m
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)
=

=
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2
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+
1
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+
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+
1
2

⎛⎝b⊤

mAm(xb − x̂b)  
r

⎞⎠⊤

+

+
1
2
b⊤

mAm(xb − x̂b)  
r

+
1
2
b⊤

mbm =

=
1
2

xb − x̂b
2
Λm

+
1
2
r +

1
2
r⊤ +

1
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mbm =
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2
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where, since 1
2b

⊤
mbm is a constant term, it does not change the

result of the minimization.

Appendix C. Pose parametrization Jacobians

For the Jacobian of ⊞ operator w.r.t. the perturbation vector,
for simplicity we use the Sophus library [42] implementation
(which is obtained via symbolic computation). On the other hand,
the Jacobian of ⊟ is here presented in detail since this is often
overlooked and its essential in order to implement a marginal-
ization or prior factor. We require the Jacobian of this operator
w.r.t. to its two operands. In the first case, we want to obtain the
Jacobian of

T1 exp
(
δ1

∧
)
⊟ T2 = log

(
T−1
2 T1 exp

(
δ1

∧
))∨

with respect to δ1. To simplify the calculation, we will define
T = T−1

2 T1 which allows to employ the following approximation:

log
(
T exp

(
δ∧
))∨

≃ log (T)∨ + J−1
r

(
log (T)∨

)
δ (C.1)

As a result, the desired Jacobian is now:

∂ log
(
T exp

(
δ1

∧
))∨

∂δ1
=

=
∂ log (T)∨ + J−1

r

(
log (T)∨

)
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=

= J−1
r

(
log (T)∨

)
For the opposite case, we have:

T ⊟
(
T2 exp

(
δ2

∧
))

=

= log
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(
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=

= −log
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1 T2 exp

(
δ1

∧
))∨

≃

≃ −
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which results in:
∂ T ⊟
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