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Abstract— This paper presents a Teach & Repeat (T&R)
algorithm from stereo and inertial data, targeting Unmanned
Aerial Vehicles with limited on-board computational resources.
We propose a tightly-coupled, relative formulation of the visual-
inertial constraints that fits the T&R application. In order to
achieve real-time operation on limited hardware, we constraint
it to motion-only visual-inertial Bundle Adjustment and solve
for the minimal set of states. For the repeat phase, we show
how to generate a trajectory and smoothly follow it with a
constantly changing reference frame. The proposed method is
validated with the sequences of the EuRoC dataset as well as
within a simulated environment, running on a standard laptop
PC and on a low-cost Odroid X-U4 computer.

I. INTRODUCTION

Mimicking a certain trajectory which has been previously
followed by a mobile sensor platform is a desirable robotic
capability with clear applications; such as structure inspec-
tion, environment monitoring or sample-return missions in
planetary exploration. This problem is commonly referred to
as teach and repeat (T&R) navigation.

In these scenarios, localization usually needs to be solved
internally by the robot in the absence of reliable external
position information such as GPS. Simultaneous Localization
and Mapping (SLAM) is a widely adopted solution for GPS-
denied navigation, allowing to estimate the robot pose for
use in the control loop. However, SLAM typically uses an
absolute formulation, where all robot poses and landmark
positions are referred to a single privileged reference frame
(generally the initial robot pose). This choice imposes global
map consistency, which cannot be generally guaranteed due
to pose estimation drift. Thus, most solutions expect frequent
loop-detection followed by global pose-graph relaxation,
which becomes very costly for large-scale scenarios.

If the expectation of optimal path-planning is abandoned,
global map consistency is actually not required [1]. In other
words, only local consistency is really necessary. In fact, it
is possible to employ a relative formulation of the problem,
where poses are expressed as a transformation relative to
other nearby pose while landmarks positions are expressed in
the initial observing coordinate frame. As a result, constant-
time loop-closing becomes possible, obtaining a more effi-
cient approach [2].

The computational cost of the navigation solution is of par-
ticular importance for payload-limited hardware platforms,
such as small aerial robots. For this reason, relative localiza-
tion approaches become an attractive solution. On the other
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hand, the visual-inertial combination is a very convenient
sensor choice for agile and small robots, due to its low power
demand, cost, size and weight. Inertial data can capture brisk
motions, while visual data refers to external features and can
remove drift.

Motivated by these two aspects, in this work we present
a simple and efficient visual-inertial teach and repeat
(VI-T&R) method from stereo and inertial data. Our main
contribution is a relative tightly-coupled keyframe-based
formulation of the problem, the first one in the literature
to our knowledge. We also propose several adaptations for
resource-constrained hardware, being our approach suitable
for small aerial vehicles. We demonstrate the performance
and potential of the proposed approach with experimental
results in the EuRoC dataset and in simulation environments.

II. RELATED WORK

The literature on T&R navigation has mostly focused on
terrestrial robots equipped with either laser [3] or visual
sensors [4]. Works that address aerial navigation are more
scarce.

In [5] a proof-of-concept for the T&R navigation of
an aerial robot is presented. The proposed method uses
a downward-looking camera for pose tracking based on a
planar floor assumption. In following work [6], the T&R
method was adapted for the case of fixed-wing aerial plat-
forms. However, only offline processing is performed and
GPU hardware is required. Moreover, closed-loop control
and trajectory planning are left as future work by the authors.
More recently, a VI-T&R approach for aerial robots has been
proposed in [7], involving both tightly-coupled and loosely-
coupled estimators running together. Real-time performance
is demonstrated in experiments using a powerful Intel i7
processor. The authors of this work state that for achieving
navigation, loop-closing and global bundle-adjustment are
performed between teach and repeat phases.

In other related works, the benefits of the relative for-
mulation of the problem are identified and embraced at
various degrees. In [8], while following the usual approach
of referencing poses w.r.t the initial coordinate frame, the
benefit of expressing landmark positions relative to the
observation frame is highlighted. Moreover, authors argue
in favor of not fixing the initial pose of state estimation
window (typically done to remove the gauge freedom of the
solution) for the purpose of avoiding an unbounded growth of
the uncertainty of the states, which introduces linearization
errors. Similarly, [9] employ the concept of anchor nodes for
the same purpose, referencing all information to the initial
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Fig. 1: Map structure: VIO estimates the transformations
T{j;“ between keyframes. During the repeat phase, a rel-
ative transform 777 between the active VIO keyframe and
the prior map is estimated. A local Euclidean map can be
built combining transforms, and a smooth trajectory to be
repeated can be generated.

pose of the estimation window. Finally, in [10] visual-inertial
estimation over a purely-relative map is presented.

Only very few works in the literature address stereo
visual-inertial state estimation on resource-constrained plat-
forms. In [11], a monocular visual-inertial estimation method
is presented, demonstrating real-time operation on low-
cost hardware by performing motion-only bundle-adjustment
(map structure is fixed). In [9] an IEKF solution targeting
a lower power ARM computer is proposed. However, the
computation time is not reported.

III. TIGHTLY COUPLED VISUAL-INERTIAL TEACH &
REPEAT

The proposed VI-T&R method is composed of two stages.
During the feach phase, the robot is localized using stereo
visual-inertial odometry (VIO), while also recording the
poses of relevant keyframes and observed 3D landmarks into
a map. Subsequently, during the repeat phase, the robot also
localizes itself using VIO but refers its pose with respect to
the prior map, which allows to follow the previous trajectory.

The estimated map adopts a relative formulation, similarly
to [4], [12]. It is in essence a graph of robot poses (or
keyframes), where edges represent relative transformations
in SE(3). 3D visual landmarks are represented relative to
each local frame. The map structure is illustrated in Fig. 1.

A. Visual-Inertial Odometry

The goal of the VIO in the teach phase is to estimate the
current camera pose T, relative to the last keyframe, and the
n most recent inertial states. The full state is defined as
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where T = T)._, represents the current camera pose W.rL.L.
last keyframe, g* is the normalized gravity vector (we
assume known gravity magnitude) expressed in the IMU
coordinate frame of the oldest state in the estimation window,
v, is the velocity expressed in camera frame ¢ and b; the
gyroscope bias for state <.
We choose to include the gravity vector as part of the state
given that, under the relative formulation of the problem,
we wish to avoid representing poses with respect to a fixed
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coordinate system, such as a gravity-aligned reference frame.
This also allows the correction of the gravity direction
estimate, in contrast to most works where it is initially
obtained and then used to align the working frame to it. We
also use a minimal 2DoF parametrization which removes the
unobservable dimensions of global yaw and position.

On the other hand, since the observability of both the grav-
ity vector and the accelerometer biases cannot be guaranteed
unless the estimation window includes rich rotations [13],
we choose to obtain an initial accelerometer bias via manual
calibration and we keep it fixed. While the accelerometer
bias might drift over time, its influence is smaller than that
of the gyroscope bias and gravity direction. We also exclude
the last velocity state v,,, since it is only observable from
inertial measurements. Thus, we estimate velocities up to
v,—1 and obtain v,, from inertial integration.

Finally, in order to keep the computational cost low, we
perform motion-only Bundle Adjustment in a single-thread,
estimating x at frame rate. In other words, landmarks are
not adjusted after initial triangulation. Moreover, only the
current camera pose T _; is estimated, while remainder
T transforms are kept fixed. The remainder of variables
(linear velocity, gyroscope bias and gravity) are left unfixed.
Summing up, the objective function for VIO is defined as:
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where exmfl’n is the visual residual related to the most
recent camera frame and the m-th landmark (of the most
recently observed M landmarks in previous keyframes),

el{i 11 1s the inertial residual related to pair ¢ and 7+ 1 of in-

ertial states, and QV,_nl,
matrices.

Visual Residuals: The visual portion of the VIO
problem involves the minimization of a stereo reprojection
residual obtained from a pair of matching landmarks £ € R3
and image-feature pair y € R*,
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where 7(-) is the left-right stereo-projection function. Tg
represents the camera pose j w.r.t coordinate frame i, £, the
m-th landmark, expressed in frame 4 and y?, the observation
of £ from frame j. ‘

On a relative framework, obtaining T? for keyframes that
are not directly linked involves composing the kinematic
chain from ¢ to j at every solver iteration [12]. However,
given that we only optimize the last transform T),_,, the
kinematic chain is fixed. Thus, we can precompute the co-
ordinates of tracked landmarks w.r.t. to the latest coordinate
frame (Z’nfl) every time a new keyframe is added.

The covariance matrix QV,, is defined as:
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where Y, = 021 relates to noise in feature position y,
J, is the Jacobian of the projection function 7w and Rﬁ“



the camera orientation. The covariance matrix ®,,,, corre-
sponding to landmark £,,, is initially obtained via first-order
propagation of the stereo triangulation and later transformed
after keyframe insertion to maintain its representation w.r.t.
frame :. Including this term is beneficial under a motion-
only estimation and represents better the resulting pose
uncertainty [14], [4].

Inertial Residuals: We use the preintegrated residu-
als of [15], adapted to estimate relative motions. Inertial
preintegration adopts a body-centered frame, removing the
dependency from the variables being optimized. Thus, in-
tegration does not have to be repeated for each iteration.
This results in a straightforward formulation in the context
of relative localization as it actually reduces to a comparison
between the relative rotation and translation obtained using
both vision and inertial information. The inertial residual
el{i_H = (eR7ev,ep,ebg) is defined as:
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where AR, Av, Ap are the preintegrated IMU measure-
ments (using known b, and corrected using jacobians w.r.t.
b variation during optimization), {R],t}} stands for the
relative transformation between key-frame ¢ and j, already
expressed in the IMU frame and R? the orientation of the
camera in the IMU frame. Note that the gravity vector is
expressed in frame ¢ by applying the fixed transform R’i
(precomputed before optimization). QIM 11 can be computed
incrementally as in [15]. We also add to this term the
uncertainty of fixed variables such as t], R/ and R, which
helps to mitigate the possible side-effects of early fixation.

State Initialization: For inertial state estimation we
assume b, known (and thus is fixed). In practice, a rea-
sonable estimate for b, can be obtained, for example, by
obtaining average accelerometer readings at rest on each axis
in opposing directions. Afterwards, an initial value for g can
be obtained by subtracting b, from these average readings.
State initialization then continues by running both visual-
only (VO) and visual-inertial (VI) estimators in parallel.
First, the VI estimator initializes bg using T and v as
obtained from VO estimation. Next, bg is kept fixed while
linear velocities and gravity vector are refined. Once these
have converged, initialization is complete and T is estimated
from the initialization seed.

Pose prediction: While the VIO algorithm runs close
to camera rate, for the purpose of closed-loop control of an
aerial robot, we also run a pose prediction thread at IMU
rate by integrating angular velocity and linear acceleration.

Active matching: For landmark tracking, every time
a new VIO keyframe (KF) is inserted, we first transform
the previously tracked landmarks, expressed in current KF <,
towards the new KF j by applying the uncertain transform

(see [4]). The 3D landmark and its covariance matrix are
projected to the image and only features which fall inside
the corresponding high-confidence ellipse are considered.
A match is then established with its nearest neighbour
in descriptor-space, up to a maximum distance threshold.
As VIO produces high-confidence estimates, this approach
reduces false positives and greatly limits the search area.

B. Reference map localization

In order to follow a previously taught trajectory, during
the repeat phase it is first necessary to establish a relative
transform T%. between the last VIO reference keyframe i
and closest keyframe ¢* in the reference map (see Fig. 1). In
order to decouple VIO from the reference map localization,
these steps are solved independently.

To obtain Tﬁ*’ we perform visual-only localization against
the reference map by minimizing the reprojection error
between observations in keyframe ¢ and the corresponding
reference map landmarks observed in keyframe ¢*, with the
following cost function:
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where Tz is a prior for the unknown transform.

Initially (and whenever relocalization is triggered), ¢*
is unknown and is found by Bag-of-Words [16] (BoW)
matching between observations in ¢ and those of the complete
reference map (during map construction we store the BoW
representation for each keyframe). The prior TZ* is then
obtained via PnP estimation under a RANSAC scheme
using correspondences established via nearest-neighbors in
descriptor-space, considering only candidates with matching
BoW feature clusters.

In subsequent steps, after a new VIO keyframe j is
inserted, the prior is first updated to represent the pose of j
w.r.t. keyframe ¢* as T:TZ The keyframe j* closest to the
keyframe j in the local map starting from ¢* is set as the new
reference. The new prior T;* is then obtained as T; TZ*.
Finally, optimization (5) is performed to obtain the resulting
T; Landmark matches between j and j* are established

by projecting landmarks observed in j* to j, using Ti, and
the previously described active-matching procedure.

If a minimum number of correspondences fails to be
established, indicating a badly predicted prior or that an
unmapped area is being explored, relocalization based on
BoW is triggered. Until successfully relocalized, T§ is used
as the localization result, resulting in purely predicted map-
to-VIO pose.

C. Path following

In order to repeat the taught path, a continuous trajectory
needs to be obtained to allow for smooth path following.
This is particularly challenging when employing a relative
formulation, since there is a continuously changing reference
frame. To address this, we proceed as follows. We first
compute a smooth trajectory from the neighboring poses of

&)
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Fig. 2: Translation component of RPE measured over all possible subsequences of different lengths from 0.5 m to 5.0 m,
for the map built during the teach phase for each EuRoC dataset MH sequence, for Laptop i7 and Odroid XU-4 computers.

keyframes 7*. To do so, we re-use the local map built during
localization. Linear and angular velocities associated with
each keyframe (as estimated during the teach phase) are used
as constraints for a polinomial trajectory generator [17]. For
the desired arrival time at each keyframe we use the travel
time relative to the initial pose of the local map, as observed
during the teach phase. As a result, the obtained trajectory
closely resembles the one originally taught.

To follow the generated trajectory, we first obtain a
setpoint by sampling the polinomial with a time cursor t,
which advances in real-time. The difficulty here lies in that,
whenever the reference keyframe ¢* is redefined, ¢ cannot
be used to sample the new trajectory, since ¢ = 0 now
represents a different pose. To handle this situation, the
trajectory is built from a local map including both past and
future poses such that an overlap between the previous and
current trajectories exists. As the relative travel time of each
segment is fixed, we obtain the new cursor t’ as t —tg, where
to is the arrival time of the initial node of the new trajectory
w.r.t. the old trajectory’s initial node.

Finally, based on the map-localization result and the
desired setpoint, we compute a pose error which is used as
input to a closed-loop cascaded PID controller, allowing to
compensate for external perturbations such as wind.

IV. EXPERIMENTAL RESULTS

The proposed method was implemented in ROS, using the
Ceres [18] solver for state estimation. As our embedded hard-
ware platform we use a low-power ARM Odroid-XU4 single-
board computer, while in our laptop we have an Intel Core i7-
3632QM processor running at 2.2 GHz. To reduce the image
processing overhead on the Odroid, we use SIMD-optimized
ORB and BRIEF algorithms [19]. For experiments, we used
the EuRoC MAV dataset [20] to assess localization accuracy,
while rotorS [21] and Gazebo simulator were used to analyze
navigation performance during repeat phase. We also show
the computational cost of the method when running both on
the embedded hardware and a laptop computer as reference.

A. VIO localization

Under the T&R problem formulation we only care about
local map consistency and thus we measure relative-pose
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error (RPE) [22] to assess VIO accuracy. Based on a typical
maximum local map size, we measure RPE over subse-
quences of contiguous map keyframes, of various lengths up
to S5m. These measurements were performed over the MH
series of EuRoC dataset sequences, given the challenging
image conditions of the V series (large exposure changes,
significant blur, etc.). We run experiments on both hard-
ware platforms for the purpose of establishing the effect of
limited computational power on localization accuracy (since
frame dropping implies less frequent corrections and longer
prediction intervals). In order to initialize the IMU we use
the ground truth value of the accelerometer bias at dataset
startup. On Fig. 2 we report the RPE measurements.

Analyzing the results, we can see that for the maximum
trajectory length, there’s a best and worst-case median RPE
error of ~0.05 m and ~0.15 m, respectively. Moreover, it
can also be seen that there is not a significant difference
in accuracy between both platforms, demonstrating its low
computational footprint.

B. Map-based Localization

To assess the accuracy of the map-based localization, we
compare the estimated map-to-VIO keyframe transform to
groundtruth, as a RPE (figure 3). For this experiment, we
perform the teach phase using one of the EuRoC sequences
and repeat using a different one. While there is a partial
overlap between sequences, there are also significant non-
overlapping areas. Thus, this experiment also serves to show
re-localization ability and pose prediction accuracy using
VIO, when deviating from the taught trajectory. We also
overlay a 30 uncertainty region to evaluate the estimator
confidence. We color in red those poses which are the result
of pure predictions, and in green those ones successfully
matched to the map from the teach phase. Finally, we include
the longitudinal distance between the chosen map reference
keyframe and current VO keyframe.

From these experiments we can see that, if map local-
ization is successful, translation errors are around 0.1 m
in average. On the other hand, during exploratory periods,
where camera pose is only predicted using VIO w.r.t. the last
successful localization, worst-case errors are between 0.2 m
and 0.5 m in respective experiments (mainly in the robot
forward direction z). During these periods it is also possible
to see that the distance (obtained from groundtruth) between
VO and map reference keyframe considerably increases. This
is due to the fact that the robot in fact deviates from the
known path and this reference becomes distant. Moreover,
in this situation the reference keyframe is obtained using
the predicted pose, instead of global localization (III-B).
Thus, map localization errors are expected to increase until
relocalization occurs.

Finally, we can see that, in general, the estimated pose
uncertainty is consistent with the errors except for brief
periods of time. It should be noted, though, that a certain
degree of overconfidence is expected given the use of naive
triangulation uncertainty propagation and similar approxima-
tions.

X-U4 —

I feature extraction/description

VIO
i7 H-I_H I Map Localization

0.00 0.01 0.02 0.03 0.04 0.05
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Fig. 4: Execution times of the algorithm on both hardware
platforms, using MH_01 EuRoC sequence.

C. Computational Cost

In this section we show the mean time for feature ex-
traction/description, VIO and map-localization tasks (Fig. 4),
measured on both hardware platforms. As expected, there’s
a significant difference in computational capabilities of both
platforms. On the Intel i7, the VIO task runs at around
50 Hz, of which feature extraction represents near 2 ms of
overhead. On the other hand, the computational times of the
Odroid XU-4, while higher, are still within typical real-time
response rates at around 25 Hz for the VIO task. We can also
see the significant benefit of an optimized implementation
of ORB/BRIEF algorithms. Finally, we can see that map-
localization takes around 1 ms for the i7 and 2.5 ms on
the Odroid. In our current implementation VIO and map-
based localization are run sequentially but these tasks could
be easily run in parallel. Finally, it should be emphasized
that these processing rates correspond to state correction.
Given that IMU is used for pose prediction in parallel to
image-processing, states are predicted at IMU rate for high-
frequency closed-loop control.

D. Navigation

In order to demonstrate how a previously taught map can
smoothly be followed with the proposed method, achieving
high accuracy even over a globally inconsistent map, we
performed a teach phase over a simulated environment using
the Gazebo/rotorS simulator followed by an autonomous
repeat phase. For the experiment we simulate an AscTec
Firefly hexacopter with a stereo VI sensor, configured at 20
frames per second and an IMU rate of 200 Hz. The "outdoor"
rotorS simulated environment was used, consisting of a long
road with houses and other structures, encompassing an
area of around 100 x 200 m. For closed-loop control, we
sample the smooth trajectory at the current time-cursor (III-
C) and obtain desired position and yaw, along with their
corresponding velocity and acceleration. This information is
fed to a proportional controller [23] producing motor speed
commands which are then sent to rotorS. In order to initialize
the accelerometer bias, we obtain ground-truth value from
simulator at startup. As rotorS models the corresponding
random-walk process for IMU biases, drift from this initial
value is also simulated.

For the first experiment, the drone was commanded to
navigate around one of the houses, mimicking an inspection
task, exploiting the 3D motion capability of the robot. For
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running on simulator

the second experiment, a longer trajectory (around 400 m)
covering the whole road was taught, demonstrating the
capability of the method to return to its starting location with
high accuracy. After the initial teach phase, the trajectories
were repeated several times.

In figure 5 we show the trajectories followed during both
stages of each experiment. In both cases, the robot is able
to accurately follow the taught 3D trajectory. The average
translation errors w.r.t. the reference keyframes are around
0.8 m and 0.13 m, respectively. For the second experiment
in particular, the robot reaches its final goal within a 0.2 m
in all instances of the repeat phase.

V. CONCLUSIONS

We have presented a simple and efficient visual-inertial
T&R navigation method suitable for small unmanned aerial
robots in applications such as 3D inspection tasks. The
method was tested on challenging EuRoC dataset and

demonstrated closed-loop behavior in simulation. Local-
ization accuracy when running on embedded hardware is
comparable to that obtained with a modern laptop computer.
The resulting performance allows for accurate trajectory
repetition of long trajectories and thus demonstrates the
feasibility of the approach.

For future work we wish to precisely establish the cost
and accuracy of full state estimation (map and past poses)
compared to our reduced formulation. Finally, we will further
examine the performance of our method when running on-
board an aerial robot.
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