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Abstract— When targeting embedded applications such as
on-board visual localization for small Unmanned Air Vehicles
(UAV), available hardware generally becomes a limiting factor.
For this reason, the usual strategy is to rely on pure motion in-
tegration and/or restricting the size of the map, i.e. performing
visual odometry. Moreover, if monocular vision is employed,
due to the additional computational cost of stereo vision, this
requires dealing with the problem of unknown scale.

In this work we discuss how the cost of the tracking task can
be reduced without limiting the size of the global map. To do so,
the notion of covisibility is strongly used which allows choosing
a fixed and optimal set of points to be tracked. Moreover, this
work delves into the concept of parallel tracking and mapping
and presents some finer parallelization opportunities.

Finally, we show how these strategies improve the com-
putational times of a stereo visual SLAM framework called
S-PTAM running on-board an embedded computer, close to
camera frame-rates and with negligible precision loss.

I. INTRODUCTION

With the growing interest in UAVs, there has been an

increasing need for localization methods capable of operating

on-board and in real-time. Designing systems that provide

accurate pose estimation in challenging environment while

running on platforms with limited computational resources

is thus a key problem in mobile robotics. For this reason,

in GPS-denied scenarios such as indoors or outdoors in

areas with poor reception, vision-based approaches have been

widely used.

However, efficient vision-based localization solutions gen-

erally still require considerable computational power. This

is particularly difficult when targeting low-payload robots,

where only small and low-resource processing hardware can

be employed. It is thus worth considering new strategies

for reducing computational requirements of vision-based

localization methods and allow meeting real-time constraints.

From a methodological point of view, vision-based lo-

calization methods can be classified as visual odometry

(VO) or Simultaneous Localization and Mapping (SLAM)

approaches. VO techniques focus on ego-motion integration

to get a camera pose estimate, while SLAM approaches

build a global map against which the robot can localize.

One of the main drawbacks of VO approaches is that

accumulated pose drift is never corrected due to the absence

of global map information. In contrast SLAM approaches

1Matı́as Nistche, Gastón Castro, Thomas Fischer and Pablo De Cristóforis
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are able to localize against the map without requiring motion

integration.

For the case of SLAM (Simultaneous Localization and

Mapping), one widely adopted strategy was one proposed

with PTAM [1] (Parallel Tracking and Mapping), where

both tracking and mapping tasks are decoupled as separate

computing threads. Many recent feature-based visual SLAM

approaches embraced this approach and added also a loop-

closing thread [2], [3].

Both tracking and mapping tasks have costly operations

(such as point-matching and Bundle-Adjustment) which are

largely dependent on the number of map-points. Since the

map can grow up to thousands of map-points and keyframes,

these tasks would not be able to run in real-time if all map

is considered at each step. While one simple approach could

be to restrict the size of the map and discard old information,

this increases pose drift and eliminates the possibility of

loop-closure.

Therefore, an efficient method to determine which part of

the map is relevant is required. For tracking, the subset of

points expected to be observed by the current camera-frame

is needed. While for mapping, a subset of related keyframes

and their corresponding observations need to be selected to

perform local optimization. This selection becomes critical

since not only it determines the efficiency of tracking and

mapping tasks but also their accuracy and robustness.

The notion of covisibility [4] can be used to determine the

relevant keyframes and map points (i.e. mutually observable)

to a given camera pose and the currently tracked map. A pair

of keyframes are said to be co-visible when they observe at

least one visible map point in common. However, it is not

yet clear how to best select these keyframes and map points

using covisibility.

In this regard, the main contribution of this paper is to

present a map marginalization strategy based on covisibility

information that can be employed to solve more efficiently

some of the most computationally demanding tasks in a

SLAM system. We analyze how precision is affected and

how this can help running full SLAM on low-resource

hardware platforms. Furthermore, this work presents several

approaches to minimize contention points and improve par-

allelism.

II. RELATED WORK

In terms of on-board vision-based localization, a number

of recent works employing either visual-odometry or SLAM-

based approaches are presented.



Sanfourche et al. [5] proposes a stereo visual odometry

suitable for UAVs. The method tracks features from suc-

cessive camera frames while establishing 2D-3D associa-

tions with respect to a keyframe-based map. There is no

optimization performed over the map, however pose drift

grows slower compared to frame-to-frame visual odometry.

They achieve 20Hz operation, however, while they claim

their approach is suitable for embedded systems, experiments

are performed using a relatively powerful Intel Core 2 Duo

computer.

Weiss et al. [6] propose an on-board localization method

equipped with a single camera that uses a inertial-optical

flow approach for speed and IMU bias estimation. As speed

integration is prone to position drift, an optimized version

of PTAM is used to produce a 6DoF pose estimation. Com-

bining visual and inertial measurements has proven effective

for solving localization on UAVs.

Burri et al. [7] build upon visual-inertial odometry (VIO)

obtaining dense environment reconstruction suitable for mis-

sion planning and exploration. Estimation drift derived from

the VIO method is corrected by performing relocalization

between local submaps. They obtain 20Hz operation time

using a tailor made ARM-FPGA system [8].

Leutenegger et al. [9] proposes a novel visual-inertial

SLAM system coined OKVIS. They formulate the problem

as one joint optimization where an IMU measurement error

term is considered along with the usual reprojection error

within the minimization cost function. However, OKVIS is

not conceived to work in low-resource hardware platforms

and experiments are performed on a powerful laptop com-

puter.

One of the main works on fully on-board stereo vision for

UAV navigation was presented by Schauwecker et al. [10],

where a visual odometry system based on PTAM is used

to estimate the UAV pose. This work was extended in [11],

where two stereo cameras were used: one facing forward,

used to run a reduced SLAM system, and another facing

downward, used for ground plane detection and tracking.

Estimations obtained by each sensor are fused using EKF.

The authors show that using two stereo cameras significantly

increases pose estimation accuracy and robustness.

In terms of reducing the computational cost of SLAM

approaches, some works focus on the problem of dealing

with a large global map.

In [12] Lynen et al. present a framework for tracking

the camera pose relative to a global map. They assert their

method can be used for real time localization of mobile

platforms with limited resources without the use of an ex-

ternal server. They achieved this by employing a covisibility

strategy [13] to efficiently localize against the map.

Strasdat et al. [14] introduces an optimization framework

that distinguishes two different keyframe windows. An inner

window is composed by those keyframes that will be actively

optimized while an outer window of close keyframes will act

as fixed constrains. Optimization windows are defined based

on the degree of covisibility between keyframes.The authors

claim constant time operation when the maximum number

of keyframes on each window is restricted.

Mur-Artal and Juan D. Tardós present a SLAM system

called ORB-SLAM2 [3] that maintains a covisibility graph

and a corresponding minimum spanning tree. These graphs

are used to retrieve local windows of keyframes, so that

tracking and mapping tasks operate locally while allowing to

work on large environments and enabling for pose-graph op-

timization performed when closing a loop. This covisibility

graph used in ORB-SLAM2 is similar to the one introduced

by Strasdat et al. in [14].

III. METHOD

In the context of optimization-based SLAM, the tracking

task is in charge of determining frame-to-frame camera pose.

The tracking minimizes re-projection errors determined by

map point to image-feature matches. Since this optimization

requires an initial solution, it is usual to predict camera

motion from previous poses and/or using additional propri-

oceptive sensors (e.g. IMU, wheel encoders, etc.). With this

predicted pose, map-to-frame matches need to be established.

To do so, map points are projected to the camera frame and

then, by nearest-neighbor search in image-descriptor space,

matches are obtained. These matches become observations

under the optimization framework, representing a set of

constraints. Finally, pose-optimization is performed, typically

using Gauss-Newton or Levenberg-Mardquardt approaches.

From the previous steps performed by the tracking task,

the most computationally demanding are typically: feature

detection and descriptor extraction, point-to-feature match-

ing, local map building and pose minimization. In particular,

computational time of all these but feature extraction step

strongly depend on the number of map points considered.

Moreover, for matching, in principle all map points need

to be projected to the camera frame, which scales linearly

with the size of the map. Also, this process is wasteful since

many points could be actually invisible due to occlusions.

Thus, a better approach is to use covisibility information

in order to find map points seen by keyframes which share

observations to the current camera frame. In other words, it

is possible to build a local map of points which are highly

likely to be currently visible.

When dealing with resource-constrained computing plat-

forms, including all co-visible points to the local map may

incur in excessive computational cost for tracking. Addition-

ally, the size of this map can grow unbounded in certain

conditions, which represents an undesirable situation in terms

of real-time operation. For this reason, in these cases it is

desirable to limit this local map.

A difficulty here appears since covisibility information

needs to be built empirically during tracking from successful

matches: whenever a point is matched to an image-feature

in a given camera frame, this point is defined as visible
from said frame. Covisibility can thus be represented as a

graph between keyframes where each edge has a weight

corresponding to the co-visibility degree, i.e. the number of

shared observations.



Covisibility information built in this manner (via detected

matches) cannot be guaranteed to match actual covisibility as

would be obtained by exhaustive pair-wise frustum-culling

between all keyframes. Thus, using covisibility information

to build the local map may not necessarily retrieve the full

set of points that could be observed by the current frame. For

this reason, some works [3] propose to use not only directly

co-visible keyframes but also a second level of keyframes co-

visible to the first. This increases the possibility of including

points which should be marked as directly co-visible but

where this information has not yet been discovered. However,

this comes at the expense of a larger local map and thus

higher tracking cost.

In the following section, a simpler and more effective

strategy for covisibility based local map building is pre-

sented, which allows to reach a bounded computational cost

of the tracking task. Furthermore, it let balance efficiency vs.

tracking precision.

A. Proposed Local Map Building Strategy

The proposed strategy for local map building is outlined

in algorithm 1.

This strategy defines how to obtain the set of points ML

and keyframes KL defining the local map, based on the

previous set of successfully tracked points MT (i.e. matched

to image-features). Moreover, a reference keyframe Kr is

designated during this process. This keyframe is considered

to be the closest to the current camera frame in terms of

observed points and is later used to determine when a new

keyframe should be added.

With this local map, the points contained are then pro-

jected to the current image and used for point-to-feature

matching. The set of successfully matched points will define

the set MT used for the next iteration. In other words, MT

will always be a subset of ML.

In general terms, the local map building strategy find

points visible by a set of keyframes Kcov , co-visible to the

reference frame Kr. This reference, in turn, is defined as the

keyframe observing the highest number of points in MT .

In particular, only the first N keyframes with highest

covisibility degree with Kr are considered. Moreover, only

up to M points observed by these keyframes are added to

ML. Finally, low covisibility keyframes can be ignored using

a minimum threshold Cmin. As a result, the size of the

local map is bounded. Moreover, the cost of building this

local map scales linearly w.r.t. the number of keyframes co-

visible to Kr. This is due to the fact that this term dominates

the number of observing keyframes of a given point in

MT . Moreover, both MT and Kcov are bounded by M (in

previous iteration) and N , respectively.

It should be noted that ML is first initialized using MT ,

since using the aforementioned limits does not guarantee that

all points in MT will be in the result. This is particularly

important when tracking is bad and MT is small, which

would result in a too small ML.

As a result of applying this local-map building strategy,

ML is bounded by M . Thus, the cost of subsequent matching

and minimization operations are also bounded by M .

Algorithm 1: Local-Map building strategy

Input: MT tracked map

Output: ML local map, KL local keyframes, Kr

reference keyframe

/* initialize with previous tracked map */

ML ←MT

/* find Kr which observes most points in MT */

foreach p in MT do
foreach Ki : observingKeyframes(p) do

count(Ki) ← count(Ki) + 1

Kr ← argmaxKi
count(Ki)

/* get N most covisible keyframes to Kr */

Kcov ← sort n(covisible(Kr), N )

/* add up to M pts observed by KFs in Kcov to ML */

foreach Ki in Kcov do
if count(Ki) < Cmin then

continue
ML ← ML∪ observedPoints(Ki)

KL ← KL ∪ {Ki}
if #ML > M then

break

IV. EFFICIENT ON-BOARD STEREO SLAM

In order to verify the strategy proposed in this work, we

build upon the stereo visual SLAM system S-PTAM [2],

which has proven to be stable, accurate and suitable for

large scale operation. In next sections, we describe some

design and implementation considerations to better exploit

parallelism in a optimization-based SLAM system. With

these improvements S-PTAM is capable of running on-board

on low-resource hardware platforms.

A. Efficient Map Access

1) Access Requirements: As tracking and mapping tasks

communicates through the map, contention points need to

be minimized for the purpose of maximizing paralleliza-

tion. The map is composed of two elements: map points

and keyframes, which are related by two different graphs:

a visibility bipartite graph between points and keyframes

(where edges describe a measurement) and a covisibility

graph between keyframes (where edges determine degree of

covisibility).

Tracking requires frequent read access to keyframes and

map points for local map definition (Section III) and

feature-to-point matching. Occasionally, a frame is declared

keyframe and its unmatched features are triangulated and

added to the map as new points. Only in this case the

tracking thread requires write access to maintain consistency

of visibility and covisibility graphs.

On the other hand, the mapping task optimizes the map

when a new keyframe is created. It requires both read

and write access to keyframes and map points. It is also

responsible for finding new matches between points and
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Fig. 1: Mean execution times for different values of the local map size (M ), for both processing platforms, over all MH

sequences of EUROC dataset.

image features, updating the relations graphs with the new

measurements.

Finally, a loop-closing task tries to detect loops upon

new keyframe creation and, when detected, performs global

pose-graph optimization. This involves write-access to all

keyframes and map points. In principle this would involve

halting mapping and tracking operations, however this is

undesirable.

2) Synchronization strategy: In order to satisfy previ-

ous requirements while maximizing parallelism, instead of

locking the whole map, map points and keyframes can be

individually locked in order to access information such as

point position and keyframe poses as well as other relational

information such as keyframe covisibility.

In this scenario, when requiring write-access to multiple

keyframes and map points simultaneously, such as when

closing a loop, one approach could be to lock all of these

simultaneously. However, a better choice is to arbitrate access

to the map by defining required working regions beforehand.

In other words, the mapping task can inform the region where

it is currently working on and the loop-closing task can then

avoid this region until it is freed.

B. Feature extraction and matching

Similarly to ORB-SLAM, features can be extracted on

each image using a fixed-size grid. Over each cell, FAST [15]

features are detected. If not enough are found in one cell, a

lower feature response threshold is used. This process allows

to obtain features throughout the whole image. However,

this step results in a large number of features and filtering

is required. To do so, we recursively divide the image area

using a quad-tree, assigning features to each cell accordingly.

When a given number of cells is reached, the feature with the

strongest response of each cell is returned. In this way, it is

possible to limit how many features are used for tracking and

have an homogeneous distribution of feature in the image.

Also, to better exploit hardware parallelism, feature extrac-

tion (detection and description) and point-to-feature match-

ing can be done concurrently amongst both images of the

stereo pair.

V. EXPERIMENTS

In this section we present the results obtained by the use

of the local map building strategy in terms of the resulting

performance improvement, particularly when running on

low-resource hardware, and of its impact in localization

precision. As a reference, we also run the modified S-PTAM
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Fig. 2: Impact of different local map sizes on precision: RMSE values for relative translation and rotation errors, for each MH

sequence of the EUROC dataset, for both processing platforms. Corresponding error values for ORB-SLAM2 are included.

on a powerful desktop computer and compare the obtained

results and that of ORB-SLAM2 [3]. In this case we are not

using loop-closing on S-PTAM, for fairness we disable this

feature in ORB-SLAM2 as well.

Since the purpose of this work is to ultimately enable on-

board and real-time execution of a Visual SLAM system for

localization of UAVs, we test the S-PTAM system running on

board an Odroid XU4 computer with four Cortex-A15 cores

running at 2 GHz and four Cortex-A7 cores running at 1.4

GHz. For establishing a precision baseline without hardware

constraints, we also run S-PTAM on an Intel Core i7-7700.

For a realistic and repeatable experimentation, we used

the EUROC MAV dataset as input data. Since this is a

challenging dataset with rapid camera-motion, we fuse IMU

data using the MSF sensor fusion framework [16]. When

running S-PTAM on the Odroid XU4, we replay the EUROC

rosbag files on a desktop computer and feed data through

an Ethernet connection to the Odroid, so as to remove any

impact of I/O to the performance of the embedded system.

Moreover, we only run MH sequences since V sequences

present motion which is too fast for Odroid to follow.

In figure 1, we present the execution times for the tracking

task of S-PTAM when using our proposed local map building

strategy and that of ORB-SLAM2 (with author’s parameters

for this dataset), for different values of M (maximum size

of local map). We also show the computationally most

demanding steps of the tracking task in S-PTAM. We do

not present execution of ORB-SLAM2 on-board the Odroid

XU4 computer since tracking was quickly lost due to high

processing time for each frame.

In figure 2 we present the relative translation and orien-

tation errors of S-PTAM with different values of M , when

running on each platform. Moreover, we also measure ORB-

SLAM2 tracking precision for reference. It should be noted

that since we are interested in using the SLAM system as

a real-time localization source for autonomous navigation of

UAVs, what is of importance when measuring precision is the

error arising from camera pose reported after each tracking it-

eration, instead of the one obtained after local or even global

bundle-adjustment. This is an important difference w.r.t. to

other works where error is measured only after the complete

dataset is replayed. For this reason, we run ORB-SLAM2

against EUROC dataset while measuring localization error in

the same way, using instantaneous camera pose information.

When analyzing the results, a series of considerations can

be made. First, it can be seen that the total tracking time

(fig. 1a) of S-PTAM is much smaller than ORB-SLAM,

around 4x to 6x faster. Also, the performance of S-PTAM

on the Odroid XU4 is around and order of magnitude lower

that on the Core i7. In any case, Odroid XU4 manages to

track the camera at around 9 to 12 Hz in general, which is

close to camera frame-rate. On the other hand, on Core i7,

tracking rate is around 66 Hz, which is considerable higher

than camera frame-rate. Second, it is possible to observe the



effect of the proposed local map building strategy, where

limiting the size of this map reduces computational cost.
In order to better understand the performance improve-

ment obtained by the use of the proposed local map building

strategy, we also show the mean execution time of the

main steps of the tracking task (fig. 1b). It can be seen

that in all cases, the most demanding step corresponds to

feature extraction (detection and description). The second

most demanding step corresponds to the point to feature

matching. Here it can be seen that lowering M has a positive

impact on performance. Finally, as expected the cost of the

local map building step itself is also lessened the less points

are included in the output. On the other hand, lowering M
has a slight negative impact on the keyframe creation step.

This can be explained since a smaller local map implies that

there is a higher chance of adding points which were not

successfully matched.
In terms of tracking precision, in figure 2 it can be

seen that, in general, reducing the number of points in the

local map does not entail a significant impact on translation

or rotation relative errors. Moreover, a difference can be

observed between execution on Odroid XU4 and the Core i7

computers. This can be explained since on Odroid XU4 there

is approximately a 50% frame-loss. Finally, when comparing

to ORB-SLAM2 running on the Core i7, it can be seen that

the localization performance of the S-PTAM system is quite

similar. On the other hand, due to the high computational

cost of ORB-SLAM2, measuring the localization precision

running on Odroid XU4 was not possible.

VI. CONCLUSIONS

This work presents a local map building strategy based on

constrained covisibility marginalization of the global map,

in the context of an optimization-based SLAM. The purpose

of this strategy is to reduce the computational cost of the

tracking task in order to restrict the the size of the local map,

aiming at on-board and real-time execution of the system

on resource-constrained platforms, such as those present on

small UAVs.
In order to prove the feasibility of the proposed approach,

we implemented this strategy on the state-of-the-art S-

PTAM system and performed a series of experiments on the

challenging EUROC dataset. We also ran the ORB-SLAM2

system to establish a baseline for performance and precision.
Results show the reduction of computational time of the

tracking task, which is of significant importance for on-board

execution of the system on UAVs. Moreover, it can be seen

how the S-PTAM system manages to track the camera at

rates exceeding most standard cameras when running on a

more powerful computer. On the other hand, on a resource-

constrained platform, while performance is much lower, it is

still possible to track the camera with rapid and challenging

motions.

VII. FUTURE WORK

Analyzing the obtained results, we identify some future

work areas. First, it can be seen that feature detection, de-

scription and matching are still some of the most demanding

steps of a feature-based SLAM system. For this reason, it is

interesting to consider finer optimization of these tasks using

architecture-specific features, such as ARM’s NEON instruc-

tion set. Second, we plan to perform closed-loop experiments

by performing autonomous navigation of UAVs with the S-

PTAM system running on-board and functioning as the main

localization source. Finally, since S-PTAM already features

loop-closing, we plan to evaluate performance of the system

when running it on-board and to introduce optimization to

allow for real-time execution.
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