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Abstract. This work presents a combination of a teach-and-replay visual
navigation and Monte Carlo localization methods. It improves a reliable
teach-and-replay navigation method by replacing its dependency on
precise dead-reckoning by introducing Monte Carlo localization to de-
termine robot position along the learned path. In consequence, the nav-
igation method becomes robust to dead-reckoning errors, can be started
from at any point in the map and can deal with the ‘kidnapped robot’
problem. Furthermore, the robot is localized with MCL only along the
taught path, i.e. in one dimension, which does not require a high num-
ber of particles and significantly reduces the computational cost. Thus,
the combination of MCL and teach-and-replay navigation mitigates the
disadvantages of both methods. The method was tested using a P3-AT
ground robot and a Parrot AR.Drone aerial robot over a long indoor
corridor. Experiments show the validity of the approach and establish a
solid base for continuing this work.

1 Introduction

The problem of autonomous navigation has been widely addressed by the mobile
robotics research community. The problems of localization and mapping, which
are closely related to the navigation task, are often addressed using a variety
of approaches. The most popular is Simultaneous Localization and Mapping[1]
(SLAM), with successful examples such as MonoSLAM[2] and more recently
PTAM[3], which uses vision as the primary sensor. However, these approaches
generally model both the environment and the pose of the robot with a full met-
ric detail, using techniques such as Structure From Motion (SfM) or stereo-based
reconstruction[4]. While successful, these methods are computationally demand-
ing and have shortcomings which arise from the complexity of the mathematical
models applied.
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In terms of solving the navigation problem, it may not always be necessary to
obtain a detailed metric description of the environment nor to obtain a full 6DoF
pose. For example, teach-and-replay (T&R) techniques[5,6,7,8,9,10], where the
robot is supposed to autonomously navigate a path that it learned during a
tele-operated run, do not require to explicitly localize the robot.

While standard visual navigation approaches depend on a large number of
correspondences to be established to estimate the robot position, feature-based
T&R methods are robust to landmark deficiency, which makes them especially
suitable for scenarios requiring long-term operation [11]. Moreover, the T&R
methods are generally much simpler and computationally less-demanding. On
the other hand, they are usually not able to solve the kidnapped-robot problem
nor to localize a robot globally, requiring knowledge about the initial robot
position. Also, most of them are susceptible to errors in dead-reckoning caused
by imprecise sensors or wheel slippage.

To address these shortcomings, the use of particle-filters such as Monte Carlo
Localization (MCL)[12] becomes attractive. MCL is able to efficiently solve the
localization problem and addresses the global-localization and kidnapped-robot
problems, and has been applied with success in vision-based applications[13,14]
and robot navigation[6,10,15].

In this work, an existing visual T&R method[7,8] is improved by replacing lo-
calization by means of dead-reckoning with Monte Carlo Localization. The orig-
inal method relied on the precision of it’s dead reckoning system to determine
the distance it has travelled from the path start. The travelled distance estima-
tion determines the set of features used to calculate the robot lateral displace-
ment from the path and thus influences the precision of navigation significantly.
While the authors show [7] that estimating the distance with dead-reckoning is
sufficient for robots with precise odometry and paths that do not contain long
straight segments, these conditions might not be always met. By replacing this
dead-reckoning with MCL, the localization error can be diminished, while not
only tackling the kidnapped-robot problem but also allowing the navigation to
start at an arbitrary point in the taught path.

2 Related Work

Teach-and-replay methods have been studied in several works. While some ap-
proaches are based on metric reconstruction techniques, such as stereo-based
triangulation[9,16], several works employ so-called appearance-based or qualita-
tive navigation[5,17,18].

This type of navigation uses simple control laws[5] to steer the robot according
to landmarks remembered during a training phase. While some works approach
the localization problem with image-matching techniques[19,20,21], others ap-
proaches use only local image features[18,17]. While the feature-based techniques
are generally robust and reliable, image feature extraction and matching can be
computationally demanding. Thus, strategies for efficient retrieval of landmarks
are explored, such as with the LandmarkTree-Map[18].
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However, feature- or dead-reckoning- based localization is error-prone and sev-
eral visual T&R navigation methods propose to improve it by using advanced
techniques such as Monte Carlo Localization (MCL). One of these works corre-
sponds to [15] where MCL is applied together with an image-retrieval system
to find plausible localization hypotheses. Another work[6] applies MCL together
with FFT and cross-correlation methods in order to localize the robot using an
omni-directional camera and odometry. This system was able to robustly repeat
a 18 km long trajectory. Finally, a recent work[10] also employs MCL successfully
with appearance-based navigation.

Based on similar ideas, the method proposed in this work applies MCL to a
visual T&R navigation method[7] that proved its reliability in difficult scenarios
including life-long navigation in changing environments[11]. Despite of simplicity
of the motion and sensor models used in this work’s MCL, the MCL proven to be
sufficient for correct localization of the robot. In particular, and as in [10,6], the
localization only deals with finding the distance along each segment of a topo-
logical map and does not require determining orientation. However, in contrast
to the aforementioned approaches, global-localization and the kidnapped-robot
problem are considered in our work.

3 Teach-and-Replay Method

In this section, the original teach-and-replay algorithm, which is improved in the
present work, is presented. During the teaching or mapping step, a feature-based
map is created by means of tele-operation. The replay or navigation phase uses
this map to repeat the learned path as closely as possible. For further details
about the method please refer to works[7,8].

3.1 Mapping

The mapping phase is carried out by manually steering the robot in a turn-
move manner. The resulting map thus consists of a series of linear segments,
each of a certain length and orientation relative to the previous one. To create
a map of a segment, salient image-features (STAR/BRIEF) from the robot’s
onboard camera images are extracted and tracked as the robot moves. Once a
tracked feature is no longer visible, it is stored as a landmark in the current
segment’s map. Each landmark description in the map consists of its positions
in an image and the robot’s distance relative to the segment start, both for
when the landmark is first and last seen. Finally, the segment map contains the
segment’s length and orientation estimated by dead-reckoning.

In the listing 1, the segment mapping algorithm is presented in pseudo-code.
Each landmark has an associated descriptor ldesc, pixel position lpos0 , lpos1 and
robot relative distance ld0, ld1 , for when the landmark was first and last seen,
respectively.
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Algorithm 1. Mapping Phase

Input: F : current image features, d: robot distance relative to segment start, T :
landmarks currently tracked

Output: L: landmarks learned current segment
foreach l ∈ T do

f ← find match(l,F )
if no match then

T ← T − { l } /* stop tracking */

L← L ∪ { l } /* add to segment */

else
F ← F − { f }
t← (ldesc, lpos0 , fpos, ld0 , d) /* update image coordinates & robot position */

foreach f ∈ F do
T ← T ∪ { (fdesc, fpos0 , fpos0 , d, d) } /* start tracking new landmark */

3.2 Navigation

During the navigation phase, the robot attempts to repeat the originally learned
path. To do so, starting from the initially mapped position, the robot moves
forward at constant speed while estimating its traveled distance using dead-
reckoning. When this distance is equal to the current segment’s length, the robot
stops and turns in the direction of the following segment and re-initiates the
forward movement. To correct for lateral deviation during forward motion along
a segment, the robot is steered so that that its current view matches the view
perceived during the training phase. To do so, it continuously compares the
features extracted from the current frame to the landmarks expected to be visible
at the actual distance from the segment’s start.

The listing 2 presents the algorithm used to traverse or ‘replay’ one segment.
Initially, the list T of expected landmarks at a distance d from segment start is
created. Each landmark l ∈ T is matched to features F of the current image.
When a match is found, the difference between the feature’s pixel position fpos
is compared to an estimate of the pixel-position of l at distance d (obtained by
linear interpolation). Each of these differences is added to a histogram H . The
most-voted bin, corresponding to the mode ofH , is considered to be proportional
to the robot’s lateral deviation and is therefore used to set the angular velocity
ω of the robot. Thus, the robot is steered in a way that causes the mode of H
to be close to 0. Note that while for ground robots the horizontal pixel-position
difference is used, it is possible to apply it also with vertical differences, which
allows to deploy the algorithm for aerial robots[8] as well.

While only lateral deviations are corrected using visual information, it can be
mathematically proven[7] that the error accumulated (due to odometric errors)
in the direction of the previously traversed segment is gradually reduced if the
currently traversed segment is not collinear with the previous one. In practice,
this implies that if the map contains segments of different orientations, the robot
position error during the autonomous navigation is bound.
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Algorithm 2. Navigation Phase

Input: L: landmarks for present segment, slength: segment length, d: current
robot distance from segment start

Output: ω: angular speed of robot
while d < slength do

H ← ∅ /* pixel-position differences */

T ← ∅ /* tracked landmarks */

foreach l ∈ L do
if ld0 < d < ld1 then

T ← ∪ { l } /* get expected landmarks according to d */

while T not empty do
f ← find match(l,F )
if matched then

/* compare feature position to estimated current landmark position by

interpolation */

h← fpos −
(
(lpos1 − lpos0)

d − ld0
ld1− ld0

+ lpos0

)

H ← { h }
T ← T − { l }

ω ← α mode(H)

However, this restricts the method to maps with short segments whenever sig-
nificant dead-reckoning errors are present (eg. wheel slippage).Otherwise, it is nec-
essary to turn frequently to reduce the position error [22]. Moreover, the method
assumes that the autonomous navigation is initiated from a known location. This
work shows that the aforementioned issues are tackled by applying MCL.

4 Monte Carlo Visual Localization

In the present work the position estimate d of the robot relative to the segment
start is not obtained purely using dead-reckoning. Rather than that it is obtained
by applying feature-based MCL. With MCL, if sufficient landmark matches can
be established, the error of the position estimation will remain bounded even if a
robot with poor-precision odometry will have to traverse a long segment. More-
over, the MCL is able to solve the global localization problemwhich allows to start
the autonomous navigation from arbitrary locations along the taught path.

The robot localization problem consists in finding the robot state xk at time
k given the last measurement zk (Markov assumption) and a prior state xk−1.
MCL, as any bayesian-filter based approach, estimates the probability density
function (PDF) p(xk|zk) recursively, i.e. the PDF calculation uses information
about the PDF at time k − 1. Each iteration consists of a prediction phase,
where a motion model is applied (based on a control input uk−1) to obtain a pre-
dicted PDF p(xk|zk−1), and an update phase where a measurement zk is applied
to obtain an estimate of p(xk|zk). Under the MCL approach, these PDFs are
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represented by means of samples or particles that are drawn from the estimated
probability distribution that represents the robot’s position hypothesis.

In the present work, since the goal of the navigation method is not to obtain
an absolute 3D pose of the robot, the state vector is closely related to the type
of map used. In other words, since the environment is described by using a series
of segments which contain a list of tracked landmarks along the way, the robot
state x is simply defined in terms of a given segment si and a robot distance
from the segment’s start d:

x = [si d].

The orientation and lateral displacement of the robot is not modeled in the state
since these are corrected using the visual input. This simplification leads to a
low dimensional search-space that does not require to use a large number of
particles.

The MCL algorithm starts by generating m particles pk uniformly distributed
over the known map. As soon as the robot starts to autonomously navigate, the
prediction and update phases are continuously applied to each particle.

4.1 Prediction Step

The prediction step involves applying a motion-model to the current localization
estimate represented by the current value of particles pk, by sampling from
p(xk|xk−1, uk), where uk is the last motion command. The motion model in this
work is defined as:

f([si d]) =

{
[si, d+Δ d+ μ] (d+Δd) < length(s)

[si+1, (d+Δd+ μ)− length(s)] else

where Δd is the distance traveled since the last prediction step and is a random
variable with Normal distribution, i.e. μ ∼ N (0, σ). The value of σ was chosen
as 10 cm. This noise term is necessary to avoid premature convergence (i.e. a
single high-probability particle chosen by MCL) and to maintain the diversity of
localization hypotheses. Finally, this term can also account for the imprecision
of the motion model which does not explicitly account for the robot heading.

The strategy to move particles to the following segment, which is also used in
other works[10], may not necessarily be realistic since it does not consider the
fact that the robot requires rotating to face the following segment. However, not
propagating the particles to the following segment means that the entire particle
set needs to be reinitialized every time new segment traversal is started, which
is impractical.

4.2 Update Step

In order to estimate p(xk|zk), MCL applies a sensor model p(zk|xk) to measure
the relative importance (weight) of a given particle pi. Particles can then be re-
sampled considering these weights, thus obtaining a new estimate of xk given the
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last measurement zk. In this work, zk corresponds to the features F extracted
at time k. The weight wi of a particle pi is computed in this work as:

wi =
#matches(F, T )

|T |
where T is the set of landmarks expected to be visible according to pi. In other
words, the weight of a particle is defined as the ratio of visible and expected
landmarks. The weights wi are then normalized in order to represent a valid
probability p(zk|pi). It should be noted that it is possible for a particle to have
wi = 0 (ie. no features matched). Since every particle requires to have a non-
zero probability of being chosen (i.e. no particles should be lost), particles with
wi = 0 are replaced by particles generated randomly over the entire map.

While this sensor model is simple, the experiments proved that it was sufficient
to correctly match a particle to a given location.

4.3 Re-sampling

To complete one iteration of MCL, a new set of particles is generated from the
current one by choosing each particle pi according to its weight wi. A naive ap-
proach for this would be to simply choose each particle independently. However,
a better option is to use the low-variance re-sampling algorithm [1]. In this case, a
single random number is used as a starting point to obtain M particles honoring
their relative weights. Furthermore, this algorithm is of linear complexity.

The low-variance sampler is used not only to generate particles during the
update step, but also to generate uniformly distributed particles in the complete
map (during initialization of all particles and re-initialization of zero-weight par-
ticles). In this case, the set of weights used consists of the relative length of each
segment in the map.

4.4 Single Hypothesis Generation

While MCL produces a set of localization hypotheses, the navigation needs to de-
cide which hypothesis is the correct one. Furthermore, to asses the quality of this
type of localization compared to other methods (such as a simple dead-reckoning
approach) it is necessary to obtain a single hypothesis from the complete set.

To this end, the proposed method to obtain a single hypothesis is to compute
the mean of all particle positions over the complete map. This is the usual choice
for uni-modal distributions but is not suitable in general for an approach such as
MCL which may present multiple modalities. However, when MCL converges to
a single hypothesis, the mean position of all particles is a good estimate for the
true position of the robot. In these cases, all particles are found to be clustered
around a specific region and the population standard deviation is similar to the
σ value used as the motion model noise. Therefore, it is possible to check if the
standard deviation of all particles is less than kσ and if so, the mean position
will be a good estimate of the true robot position. In other cases, if the standard



20 M. Nitsche et al.

deviation is higher, the mean may not be a good position estimate. This can
happen when the robot is “lost” and when the underlying distribution is multi-
modal (i.e. when the environment is self-similar and the current sensor readings
do not uniquely determine the robot position).

Finally, since an iteration of MCL can be computationally expensive and
single-hypothesis estimates can only be trusted whenever the std. dev. is small
enough, dead-reckoning is used to update the last good single-hypothesis when-
ever MCL is busy computing or it has failed to find a good position estimate.

5 Experiments

The proposed system was implemented in C/C++ within the ROS (Robot Op-
erating System) framework as a set of separate ROS modules. In order to achieve
high performance of the system, each module was implemented as a ROS nodelet
(a thread).

Tests were performed over a long indoor corridor using a P3-AT ground and a
Parrot AR.Drone aerial robot. The P3-AT’s training run was ∼ 100m long while
the AR-Drone map consisted of a ∼ 70m long flight. The P3-AT used wheel
encoders for dead-reckoning and a PointGrey 0.3MP FireflyMV color camera
configured to provide 640 × 480 pixel images at 30Hz. The AR.Drone’s dead
reckoning was based on its bottom camera and inertial measurement unit and
images were captured by its forward camera that provides 320×240 pixel images
at 17Hz. A Laptop with a quad-core Corei5 processor running at 2.3GHz and
4GB of RAM was used to control both of the robots.

Both robots were manually guided along the corridor three times while record-
ing images and dead-reckoning data. For each robot, one of the three datasets
was used for an off-line training run and the remaining ones were used for the
replay phase evaluation (we refer to the remaining two datasets as ‘replay 1’ and
‘replay 2’). Since this work focuses on the use of MCL for improving the original
teach-and-replay method, only the localization itself is analyzed. Nevertheless,
preliminary on-line experiments with autonomous navigation were performed
using MCL which yielded promising results.1

In figure 1 the position-estimates of the robot obtained by dead-reckoning
and MCL are compared. The standard deviation of the particle population in
relation to the threshold of 5σ is also presented, see 1.

When analyzing figures 1(a),1(b), it becomes evident that the odometry of
the P3AT is very precise and MCL does not provide a significant improvement.
The standard deviations (see figures 1(a),1(b)) for these two cases show an initial
delay caused by initialization of the MCL. Once the MCL particles converge, the
position estimate becomes consistent and remains stable during the whole route.

On the other hand, in the AR.Drone localization results (see figures 1(c),1(d))
there’s a noticeable difference between the MCL and dead-reckoning estimates
due to the imprecision of the AR.Drone’s dead-reckoning. During the ‘replay 2’,

1 Note to reviewers: experiments are in progress, more exhaustive results will be ready
for the camera-ready version.
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(a) P3-AT, replay 1
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(b) P3-AT, replay 2
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(c) AR.Drone, replay 1
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(d) AR.Drone, replay 2

Fig. 1. Comparison of position estimates obtained from dead-reckoning (DR) and
MCL, with corresponding standard deviation of the MCL’s particle set
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(a) Training (b) MCL (c) Dead-reckoning

(d) Training (e) MCL (f) Dead-reckoning

Fig. 2. Parrot AR.Drone view during replay and training, for matching distance es-
timates obtained with MCL and dead-reckoning: (a)-(c): replay 2, d ≈ 0; (d)-(f):
replay 1, d ≈ length(s)

the AR.Drone was placed a few meters before the initial mapping point, which
is reflected by MCL, but not by the dead-reckoning, see Figure 1(d).

When analyzing the AR.Drone’s ‘replay 1’ (see Figure 1(c)) it can be seen
that after the initial convergence of MCL, the position estimates differ only
slightly. However, there is a particular difference at the segment end where the
drone actually overshot the ending point. In this case, MCL correctly estimates
that the robot has reached the end, while with dead-reckoning the estimate
goes beyond the segment length. Eventually, the MCL estimate diverges but
this happens since the robot landed very close to a wall and suddenly no more
recognizable feature were visible.

A similar situation occurred on ‘replay 2’ (1(d)) where the initial displacement
of the AR.Drone is corrected by MCL and its difference to the odometry remains
prominent. In this case, the MCL did not offer a suitable position hypothesis until
the drone reached the segment start (notice the high standard deviation of the
particles on 1(d)). One can see that while the MCL position estimate converges
to 0 as soon as the robot passes the segment start, the position estimate provided
by the dead-reckoning retains the offset throughout the entire segment.

Since no ground-truth is available to verify the correctness of the position es-
timates, we present the images taken when the MCL or dead-reckoning reported
the drone to be at the segment start or end, see figures 2(a)-2(c) and 2(d)-2(f).
It can be seen that in the case of MCL position estimation, the images captured
by the robot are more similar to the images seen during the training phase. In
the case of dead-reckoning, the views differ from the ones captured during the
training phase which indicates a significant localization error.
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6 Conclusions

This article has presented a combination of a teach-and-replay method and
Monte Carlo Localization. The Monte Carlo Localization is used to replace the
dead-reckoning-based position estimation that prohibited to use the teach-and-
replay method by robots without a precise odometric system or in environments
with long straight paths. Moreover, the ability of the MCL to deal with the
kidnapped robot problem allows to initiate the ‘replay’ (i.e. autonomous navi-
gation) from any location along the taught path. The experiments have shown
that MCL-based position estimate remains consistent even in situations when
the robot is displaced from the path start or its odometric system is imprecise.

To further elaborate on MCL’s precision, we plan to obtain ground-truth
position data by using an external localization system introduced in [23], In
the future, we plan to improve the method by more robust calculation of the
MCL’s position hypothesis, more elaborate sensor model and improved feature
extraction (eg. fixed number of features per frame). We also consider approaches
such as Mixture Monte Carlo [24], that may provide further advantages.

Finally, the use of MCL opens the possibility of performing loop-detection,
which will allow to create real maps rather than just remember visual routes.
Using loop-detection, the robot would automatically recognize situations when
the currently learned segment intersects the already taught path. Thus, the user
will not be required to explicitly indicate the structure of the topological map
that is learned during the tele-operated run.

Acknowledgements. The work is supported by the EU project 600623
‘STRANDS’ and the Czech-Argentine bilateral cooperation project ARC/13/13
(MINCyT-MEYS).
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