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Abstract

We present an evaluation of standard image features in the context of long-term visual teach-and-repeat navigation
of mobile robots, where the environment exhibits significant changes in appearance caused by seasonal weather vari-
ations and daily illumination changes. We argue that for long-term autonomous navigation, the viewpoint-, scale-
and rotation- invariance of the standard feature extractors is less important than their robustness to the mid- and long-
term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to
variable lighting and naturally-occurring seasonal changes. We combine detection and description components of dif-
ferent image extractors and evaluate their performance on five datasets collected by mobile vehicles in three different
outdoor environments over the course of one year. Moreover, we propose a trainable feature descriptor based on a
combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF
(Generated BRIEF). In terms of robustness to seasonal changes, the most promising results were achieved by the
SpG/CNN and the STAR/GRIEF feature, which was slightly less robust, but faster to calculate.
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1. Introduction

Cameras are becoming a de-facto standard in sensory
equipment for mobile robotic systems including field
robots. While being affordable, small and light, they
can provide high resolution data in real time and virtu-
ally unlimited measurement ranges. Moreover, they are
passive and do not pose any interference problems even
when deployed in the same environment in large num-
bers. Most importantly, the computational requirements
of most machine vision techniques are no longer a sig-
nificant issue due to the availability of powerful compu-
tational hardware. Hence, on-board cameras are often
used as the primary sensors to gather information about
the robot’s surroundings.

Many visual robot navigation and visual SLAM
methods rely on local image features [1] that allow to
create quantitatively sparse, but information-rich image
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descriptions. These methods consist of a detection and
a description step, which extract salient points from the
captured images and describe the local neighborhood of
the detected points. Local features are meant to be de-
tected repeatedly in a sequence of images and matched
using their descriptors, despite variations in the view-
point or illumination. Regarding the quality of feature
extractors, a key paper of Mikolajczyk and Schmid [2]
introduced a methodology for evaluation of feature in-
variance to image scale, rotation, exposure and camera
viewpoint changes. Mukherjee et al. [3] evaluated a
wide range of image feature detectors and descriptors,
confirming the superior performance of the SIFT algo-
rithm [4]. Other comparisons were aimed at the quality
of features for visual odometry [5] or visual Simultane-
ous Localization and Mapping (SLAM) [6]. Unlike the
aforementioned works, we focus our evaluation on nav-
igational aspects, especially to achieve long-term auton-
omy under seasonal changes.

Although the problem of long-term autonomy in
changing environments has received considerable at-
tention during the last few years [7], the main efforts
were aimed at place recognition [8] and metric local-
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ization [9]. Unlike these works, we focus on the image
processing aspect of long-term navigation in the con-
text of teach-and-repeat systems [10], where a key issue
is robust estimation of the robot heading [11, 12].

Figure 1: Examples of tentative matches of the GRIEF image features
across seasonal changes.

Let us consider a scenario where a mobile robot nav-
igates along a previously mapped path using vision as
the main sensory modality. Typically, the robot would
keep close to the previously learned path and it will not
be necessary to use image features that are highly in-
variant to significant viewpoint changes. One can also
assume that the surface in the path vicinity will be lo-
cally planar, which means that rotational invariance of
the image features is not important either. On the other
hand, the appearance of outdoor environments changes
over time due to illumination variations, weather con-
ditions and seasonal factors [13]. After some time, the
environment appearance might differ significantly from
its pre-recorded map, making long-term map-based vi-
sual navigation a difficult problem.

We hypothesize that for the purpose of teach-and-
repeat visual navigation, the invariance of the image fea-
tures to scale, rotation and viewpoint change is less im-
portant than their robustness to seasonal and illumina-
tion variations. These considerations motivate us to ana-
lyze available feature detector and descriptor algorithms
in terms of their long-term performance in autonomous
navigation based on a teach-and-repeat principle, e.g.,
as used in [10, 11, 12, 14].

In this work, we present an image feature evalua-
tion methodology which is tailored for teach-and-repeat
navigation in long-term scenarios. We show the results
achieved using combinations of open-source feature de-
tectors and descriptors such as BRIEF [15], (root)-
SIFT [4], ORB [16] and BRISK [17]. Moreover, we
evaluate a feature based on a Convolutional Neural Net-
work (CNN) descriptor and a Superpixel Grid detec-

tor (SpG) [18]. We also propose a trainable feature
descriptor based on evolutionary methods and binary
comparison tests and show that this algorithm, called
GRIEF (Generated BRIEF), and the SpG/CNN feature
outperform the engineered image feature extractors in
their ability to deal with naturally-occurring seasonal
changes and lighting variations [19]. This adaptive ap-
proach allows to automatically generate visual feature
descriptors that are more robust to environment changes
than standard hand-designed features.

The work presented here broadens our previously-
published analysis [19] by including new datasets
(‘Nordland’ [18]), image features (SpG/CNN) and fea-
ture training schemes. In particular, we separate the in-
fluence of the detector and descriptor phases on the ro-
bustness of the feature extractors to appearance changes
and demonstrate that combination of detection and de-
scription phases of different features can result in fea-
ture extractors that are more robust to seasonal varia-
tions. Moreover, we perform a comparative analysis of
training schemes, leading to computationally-efficient
image features that can deal with naturally-occurring
environment changes. We apply our evaluation on a
new dataset, which became available only recently [20].
Finally, we provide the aforementioned benchmarking
framework and the GRIEF training method as a docu-
mented, open-source software package [21].

2. Visual navigation in changing environments

The problem of vision-based localization and map-
ping has received considerable attention during the last
decades and nowadays robots can create create precise
maps of very large environments and use these maps
to determine their position with high accuracy. Local-
ization itself was typically studied in the context of Si-
multaneous Localization and Mapping (SLAM), where
the position estimate was based on a map that was
built on-the-fly and, therefore, the effects of environ-
ment changes had only marginal importance. However,
as the operation time of the robots increased, they have
to face the problem that cameras are inherently passive
and their perception of the environment is heavily in-
fluenced by illumination factors which tend to change
throughout the day.

This issue motivated research into methods that are
able to suppress the effects of naturally-changing out-
door illumination. One of the popular methods [22] cal-
culates illumination-invariant images by exploiting the
fact that the wavelength distribution of the main outdoor
illuminant, the sun, is known. This method improves
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robot localization and navigation in outdoor environ-
ments [23, 24, 25, 26], but can cope only with changes
caused by varying outdoor illumination during the day.
A recent work by Mount and Milford also reported that
low-light cameras [27] can provide images that allow
reliable day/night localisation.

However, appearance changes are not caused just by
varying illumination, but also by the fact that the envi-
ronment itself changes over time. Valgren and Lilien-
thal [13] addressed the question of environment change
in vision-based localization by studying the robustness
of SIFT and SURF image features to seasonal varia-
tions. The paper indicated that as robots are gradually
becoming able to operate for longer and longer time pe-
riods, their navigation systems will have to address the
fact that environment itself, not only the illumination, is
subject to constant, albeit typically slow, changes.

Some approaches aimed at solving the problem by
using long-term observations to identify which envi-
ronment features are more stable. Dayoub and Duck-
ett [28] presented a method that continuously adapts
the environment model by identifying stable image fea-
tures and forgetting the unstable ones. Rosen et al. [29]
used Bayesian-based survivability analysis to predict
which features will still be visible after some time and
which features will disappear. Carlevaris et al. [30]
proposed to learn visual features that are robust to the
appearance changes and showed that the learned fea-
tures outperform the SIFT and SURF feature extractors.
Lowry et al. [31] used principal component analysis
to determine which aspects of a given location appear-
ance are influenced by seasonal factors and presented a
method that can calculate ‘condition-invariant’ images.
Cieslewski et al. [32] show that a sparse 3D environment
description obtained through structure-from-motion ap-
proaches is robust to seasonal changes as well.

Some works use the long-term observations to build
models that can predict the appearance of a given lo-
cation at a particular time. Lowry et al. [33] applied
linear regression techniques directly to the image space
in order to predict the visual appearance of different
locations in various conditions. Sünderhauf and Neu-
bert [34, 35] mined a dictionary of superpixel-based
visual-terms from long-term data and used this dictio-
nary to translate between the appearance of given loca-
tions across seasons. Krajnik et al. [36] used Fourier
analysis to identify the cyclical changes of the environ-
ment states and showed that predicting these states for a
particular time improves long-term localization [37].

Another group of approaches proposes to use mul-
tiple, condition-dependent representations of the envi-
ronment. For example, Churchill and Newman [9] clus-

tered different observations of the same place to form
“experiences” that characterize the place appearance in
particular conditions. McManus et al. [38] used dead
reckoning to predict which place the vehicle is close to,
loaded a bank of Support Vector Machine classifiers as-
sociated with that place and used these to obtain a metric
pose estimate. Krajnik et al. [39] proposed to maintain
maps gathered over an entire year and select the most
relevant map based on its mutual information with the
current observation.

Methods based on deep learning, which has had a big
impact on the field of computer vision, were also ap-
plied to the problem of persistent navigation. Neubert
and Protzel [18] showed that image descriptors based on
Convolutional Neural Networks (CNN) outperformed
the best holistic place recognition methods while be-
ing able to handle large viewpoint changes. Sünderhauf
et al. [8, 40] also demonstrated impressive results with
CNN-based methods. However, the recent outcome
of the Visual Place Recognition in Changing Environ-
ments, or VPRiCE Challenge [41] indicated that novel,
yet classic-feature-based approaches, such as [42] per-
formed better than the CNN-based methods.

Most of the aforementioned approaches were aimed
at place recognition [7] and metric localization [9]. Un-
like these works, we focus on the image processing as-
pect of long-term navigation in the context of teach-and-
repeat systems [10], where a key issue is robust estima-
tion of the robot heading [11, 12].

3. Local image feature extractors

Local image features provide a sparse, but distinctive
representation of images so that these can be retrieved,
matched or registered efficiently. The feature extraction
process consists of two successive phases: feature de-
tection and feature description. The detector identifies
a salient area in an image, e.g. a corner, blob or edge,
which is treated as a keypoint. The descriptor creates
a vector that characterizes the neighborhood of the de-
tected keypoint, typically in a scale-affine invariant way.
Typical descriptors capture various properties of the im-
age region like texture, edges, intensity gradients, etc.

The features are meant to be repeatably extracted
from different images of the same scene even under con-
ditions of unstable illumination or changing viewpoints.
In this paper, we evaluate several image feature extrac-
tion algorithms for the purpose of long-term robot nav-
igation. Most of these algorithms are included in the
Open Source Computer Vision (OpenCV) software li-
brary (version 2.4.3), which was used to generate the
results presented in this paper.
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3.1. Feature Detectors

3.1.1. LoG/DoG (SIFT)
The SIFT feature [4] uses a Difference-of-Gaussians

detector to find scale-invariant keypoint locations. The
feature detection process first generates a scale space of
the image by convolving it with Gaussian kernels of dif-
ferent sizes. The DoG detector then searches for local
extrema in the images obtained by the difference of two
adjacent scales in the Gaussian image pyramid. This
gives an approximation of the Laplacian of Gaussian
(LoG) function where local extrema correspond to the
locations of blob-like structures. A local extremum is
found by comparing the DoG values of each point with
its 8 pixel neighbourhood and 9 other neighbours in the
two adjacent scale levels. This type of keypoint local-
ization allows to detect blobs at multiple scales, result-
ing in scale invariance of the features. To achieve rota-
tion invariance, SIFT assigns a dominant orientation to
the detected keypoint obtained by binning the gradient
orientations of its neighborhood pixels.

3.1.2. Hessian-Laplace Region (SURF)
The Hessian keypoint detector finds interest points

that vary in the two orthogonal directions [43]. It com-
putes the second derivatives for each image location and
finds the points for which the determinant of the Hessian
matrix is maximal. The Hessian-Laplace detector com-
bines the Hessian detector that returns corner-like struc-
tures along with a LoG detector. The Hessian detector
returns interest points at each scale in the scale space
and the Laplacian of Gaussian (LoG) detector searches
for the extremum on these interest locations. The SURF
detection scheme speeds up the process by approximat-
ing the Gaussian scale pyramid using box filters.

3.1.3. Maximally Stable Extremal Regions - MSER
The MSER method finds regions that remain in-

variant under varying conditions of image transforma-
tions [44]. The algorithm applies a watershed segmen-
tation algorithm with a large number of thresholds and
finds the regions that remain stable across these thresh-
olds. These regions are affine-covariant and can be reli-
ably extracted from an image irrespective of large view-
point or affine transformations. Since segmentation is
used, the regions can have different contours or an ellip-
tical contour can be fitted to the region.

3.1.4. Features from Accelerated Segment Test - FAST
The FAST detector compares intensities of pixels ly-

ing on a 7-pixel diameter circle to the brightness of the
circle’s central pixel [45]. The 16 pixels of the circle

are first marked as bright, neutral or dark depending on
their brightness relative to the central pixel. The central
pixel is considered as a keypoint if the circle contains a
contiguous sequence of at least n bright or dark pixels
(a typical value of n is 12). In order to quickly reject
candidate edges, the detector uses an iterative scheme
to sample the circle’s pixels. For example, the first two
examined pixels are the top and bottom one - if they do
not have the same brightness, a contiguous sequence of
12 pixels cannot exist and the candidate edge is rejected.
This fast rejection scheme causes the FAST detector to
be computationally efficient.

3.1.5. Oriented FAST and Rotated BRIEF - ORB
The ORB feature extractor combines a FAST detec-

tor with an orientation component (called oFAST) [16].
The keypoints are identified by the FAST detector and
ordered by the Harris corner measure, then the best N
keypoints are chosen. The original FAST detector is
not scale invariant, hence the ORB detector uses a scale
space to identify interest points. Then, the orientation
of the feature is calculated using the intensity centroid.
The direction of the vector between the intensity cen-
troid and the corner’s centre gives the orientation of the
point.

3.1.6. Binary Robust Invariant Scalable Keypoints
The BRISK feature detector is scale and rotation in-

variant [17]. To identify the keypoint locations, BRISK
uses the AGAST [46] feature detector, which is an
accelerated variant of FAST. The scale invariance of
BRISK is achieved by detecting keypoints on a scale
pyramid [17]. The points are chosen by ordering them
according to the FAST scores for saliency.

3.1.7. Centre Surround Extremas - STAR
The STAR feature detector is a variant of the Cen-

tre Surround Extrema (CenSurE) detector [47]. The
authors of CenSurE argue that the keypoint localiza-
tion precision of the multi-scale detectors like SIFT and
SURF becomes low because of the interpolation used
at higher levels of the scale space. The CenSurE detec-
tor circumvents this issue as it searches for keypoints as
extrema of the centre surround filters at multiple scales.
Thus, the scale space is generated by using masks of dif-
ferent sizes rather than interpolation, which has a neg-
ative impact on detection precision. While CenSurE
uses polygons to approximate the circular filter mask,
the STAR feature approximates it by using two square
masks (one upright and one rotated at 45 degrees). Sim-
ilarly to SURF, this scheme allows for efficient box filter
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response calculation at multiple scales, resulting in the
computational efficiency of STAR.

3.1.8. Superpixel-Grids - SpG
The above detectors are designed to extract a sparse

set of salient image locations from the image. In con-
trast, the recently published Superpixel-Grid detector
(SpG) [48] provides a dense set of local regions based
on superpixel segmentations. A superpixel segmenta-
tion is an oversegmentation of an image. To obtain
SpG regions, the image is segmented at multiple scales
and neighbouring segments are combined to create a set
of overlapping regions. These SpG regions are better
adapted to the image content than fixed patches and
were successfully used in combination with ConvNet
descriptors for place recognition in changing environ-
ments. Since there is only a tentative Matlab implemen-
tation available [48], we include only a partial evalua-
tion in the experiments section, where we extract around
100, 240 or 740 regions per image.

3.2. Feature Descriptors
3.2.1. Scale Invariant Feature Transform - SIFT

The Scale Invariant Feature Transform (SIFT) is
probably the most popular local feature extractor [4]
due to its scale and rotation invariance and robustness to
lighting and viewpoint variations. The SIFT descriptor
is based on gradient orientation histograms. It is formed
by sampling the image gradient magnitudes and orien-
tations of the region around the keypoint while taking
into account the scale and rotation calculated in the pre-
vious steps. The interest region is sampled around a
keypoint, at a given scale, at 16 × 16 pixels. This re-
gion is divided into 4 × 4 grid of pixels and the gradient
orientations and magnitudes are calculated. Each grid
is accumulated into an 8-bin histogram of gradient ori-
entations, which is weighted by the gradient magnitude
of given pixel. It results in a high-dimensional vector of
size 128, which contributes to the distinctiveness of the
descriptor. Further steps include normalization of the
resulting feature vector and clipping of the feature val-
ues to 0.2. This provides robustness against illumination
variations. While being precise, distinctive and repeat-
able, calculation of the SIFT feature extractor is compu-
tationally demanding. Arandjelović and Zisserman [49]
showed that simple normalization (called Root-SIFT)
improves SIFT performance in object retrieval scenar-
ios.

3.2.2. Speeded Up Robust Features - SURF
Inspired by SIFT, the Speeded Up Robust Feature

(SURF) extractor was first introduced by Bay et al. [50].

The main advantage of SURF is its speed - the exper-
iments presented in [50] show that it is significantly
faster than SIFT, with no considerable performance
drop in terms of invariance to viewpoint, rotation and
scale changes. The speedup is achieved through the use
of integral images that allow to calculate the response
of arbitrarily-sized 2D box filters in constant time. The
box filters are used both in the detection step and the
description phase for spatial binning, similarly to SIFT.
The (rather inefficient) rotation estimation step can be
omitted from the SURF algorithm, resulting in ‘Upright
SURF’, which is not rotation invariant. This might be
beneficial in some applications, for example, Valgren
and Lilienthal [13] showed that U-SURF outperforms
SURF in long-term outdoor localization.

3.2.3. Binary Robust Independent Elementary Features
The BRIEF feature descriptor uses binary strings as

features, which makes its construction, matching and
storage highly efficient [15]. The binary string is com-
puted by using pairwise comparisons between pixel in-
tensities in an image patch that is first smoothed by a
Gaussian kernel to suppress noise. In particular, the
value of the ith bit in the string is set to 1 if the inten-
sity value of a pixel in position xi, yi is greater than the
intensity of a pixel at position x′i , y

′
i . Since the sequence

of test locations of the comparisons δi = (xi, yi, x′i , y
′
i)

can be chosen arbitrarily, Calonder et al. [15] compared
several schemes for generating δi and determined the
best distribution to draw δi from. The binary strings
are matched using Hamming distance, which is faster
than using the Euclidean distance as in SIFT or SURF.
In [15], the authors consider binary string sizes of
128, 256 and 512 referred to as BRIEF-16, BRIEF-32,
BRIEF-64 respectively.

3.2.4. Oriented FAST and Rotated BRIEF - ORB
The ORB feature extractor combines the FAST detec-

tor with orientation component (called oFAST) and the
steered BRIEF (rBRIEF) descriptor [16]. The goal of
ORB is to obtain robust, fast and rotation-invariant im-
age features meant for object recognition and structure-
from-motion applications. ORB uses a rotated/steered
variant of BRIEF features where the coordinates of the
pair of points for comparison are rotated according to
the orientation computed for each keypoint. The com-
parisons are then performed. However, the rotation in-
variance introduced in ORB has a negative impact on
its distinctiveness. Thus, the authors of ORB employed
machine learning techniques to generate the compari-
son points so that the variance of the comparisons are
maximized and their correlation minimized.
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3.2.5. Binary Robust Invariant Scalable Keypoints
The descriptor of BRISK is a binary string that is

based on binary point-wise brightness comparisons sim-
ilar to BRIEF [17]. Unlike BRIEF or ORB, which
use a random or learned comparison pattern, BRISK’s
comparison pattern is centrally symmetric. The sample
points are distributed over concentric circles surround-
ing the feature point and Gaussian smoothing with a
standard deviation proportional to the distance between
the points is applied. While the outermost points of
the comparison pattern are used to determine the feature
orientation, the comparisons of the inner points form the
BRISK binary descriptor. The orientation is computed
using the local gradients between the long distance pairs
and the short distance comparisons are rotated based on
this orientation. The BRISK descriptor is formed by
taking the binary comparisons of the rotated short dis-
tance pairs with a feature length of 512.

3.2.6. Fast Retina Keypoint - FREAK
FREAK is a binary descriptor similar to BRIEF,

BRISK and ORB, which uses a sampling pattern in-
spired by the human retina [51]. FREAK also uses a
circular pattern for sampling points, although the den-
sity of the points is higher towards the centre of the
pattern, similar to the human retina. It uses different
Gaussian kernels that overlap for smoothing the points
following the distribution of the receptive fields in the
retina. FREAK uses a coarse-to-fine approach for the
comparisons to form the final binary string descriptor.

3.2.7. Convolutional Neural Networks - CNN
In recent years, Deep Learning methods were suc-

cessfully applied to many computer vision tasks. This
inspired the application of descriptors computed from
the output of general purpose Convolutional Neural
Networks (CNN) for place recognition in changing en-
vironments [18, 8, 40]. CNNs are a class of feed-
forward artificial (neural) networks whose lower convo-
lutional layers were shown to be robust against environ-
mental changes like different seasons, illumination, or
weather conditions. In our experiments we follow [18]
and use the conv3-layer of the VGG-M network [52].
Due to the high computational efforts for computing the
CNN descriptor, we evaluated its CPU and GPU imple-
mentations.

4. GRIEF: Generated BRIEF sequence

The standard BRIEF descriptor is a binary string that
is calculated by 256 intensity comparisons of pixels in

a 48 × 48 image region surrounding the keypoint pro-
vided by a detector. In principle, the locations of the
pixel pairs to be compared can be chosen arbitrarily, but
have to remain static after this choice has been made.
Realizing that the choice of the comparison locations
determines the descriptor performance, the authors of
BRIEF and ORB attempted to find the best compari-
son sequences. While the authors of the original BRIEF
algorithm proposed to select the sequences randomly
from a two-dimensional Gaussian distribution, the au-
thors of ORB chose the locations so that the variance of
the comparisons is high, but their correlation is low.

We propose a simple method that allows to adapt the
BRIEF comparison sequence for a given dataset. The
proposed method exploits the fact that the similarity of
the BRIEF features are calculated by means of Ham-
ming distance of the binary descriptors and, therefore,
the contribution of each comparison pair to the descrip-
tor distinctiveness can be evaluated separately. This
allows to rate the individual comparison locations that
constitute the BRIEF descriptor.

Given an image I, a BRIEF descriptor b(I, cx, cy) of
an interest point cx, cy (detected by the STAR algorithm)
is a vector consisting of 256 binary numbers bi(I, cx, cy)
calculated as

bi(I, cx, cy) = I(xi + cx, yi + cy) > Ij(x′i + cx, y′i + cy). (1)

Since the position cx, cy is provided by the feature de-
tector, the BRIEF descriptor calculation is defined by a
sequence ∆ of 256 vectors δi = (xi, yi, x′i , y

′
i) that define

pixel positions for the individual comparisons. Thus,
the BRIEF method calculates the dissimilarity of inter-
est point a with coordinates (ax, ay) in image Ia and in-
terest point b with coordinates (bx, by) in image Ib by
the Hamming distance of their binary descriptor vectors
b(Ia, ax, ay) and b(Ib, bx, by). Formally, the dissimilarity
d(a,b) between points a and b is

d(a,b) =

255∑
i=0

di(a,b), (2)

where di(a,b) are the differences of the individual com-
parisons δi calculated as

di(a,b) = |bi(Ia, ax, ay) − bi(Ib, bx, by)|. (3)

Let us assume that the BRIEF method has been used
to establish tentative correspondences of points in two
images, producing a set P of point pairs pk = (ak,
bk). Now, let us assume that the tentative correspon-
dences were marked as either ‘correct’ or ‘false’, e.g.
by RANSAC-based geometrical verification [53], or by
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histogram voting scheme [11]. This allows to split P
into a set of correct correspondence pairs PC and a set
of incorrectly established pairs PF . This allows to cal-
culate the fitness f (δi,PC ,PF) of each individual com-
parison δi as

f (δi,PC ,PF) =
∑
p∈PC

(1 − 2 di(p)) +
∑
p∈PF

(2 di(p) − 1).

(4)
The first term of Equation (4) penalizes the comparisons
δi that increase the Hamming distance of correctly es-
tablished correspondences and increases the fitness of
comparisons that do not contribute to the Hamming dis-
tance. The second term of Equation (4) improves the
fitness of comparisons that indicate the differences of in-
correctly established correspondences, while penalizing
those comparisons that do not increase the Hamming
distance. The fitness function f (δi) allows to rank the
comparisons according to their contribution to the de-
scriptor’s distinctiveness.

The sets PC and PF , which serve as positive and
negative training samples, can contain correspondences
from several image pairs, which allows to calculate
the fitness f (δi) for larger datasets. The fitness eval-
uation of the individual components (comparisons) of
the descriptor allows to train GRIEF for a given dataset
through an iterative procedure that repeatedly evaluates
the contribution of the individual comparisons δi to the
feature’s distinctiveness and substitutes the ‘weak’ com-
parisons by random vectors, see Algorithm 1.

At first, the training method extracts positions of the
interest points of all training images, calculates the de-
scriptors of these keypoints using the latest comparison
sequence ∆ and establishes tentative correspondences
between the features of relevant image pairs. Then, a
histogram of horizontal (in pixels) distances of the cor-
responding points is built for each image pair from the
same location. The highest bin of this histogram con-
tains correspondences consistent with the relative rota-
tion of the robot when capturing the two images – these
correspondences are added to the set PC , while the rest
of the tentative correspondences are added to set PF .
After that, Equation (4) is used to rank the individual
pixel-wise comparisons δi. Then, the algorithm discards
the 10 comparisons with the lowest fitness and gener-
ates new ones by drawing (xi, yi, x′i , y

′
i) from a uniform

distribution. The aforementioned procedure is repeated
several (ng) times. The resulting comparison sequence
∆ is better tuned for the given dataset. Except for the lo-
cations of pixels to be compared, the working principle
of the GRIEF feature is identical to BRIEF and the time
required for computation and matching is the same.

Algorithm 1: GRIEF comparison sequence training
Input:

I – a set of images for GRIEF training,
∆0 – initial comparison sequence – BRIEF
ng – number of iterations

Output: ∆ – improved compar. sequence – GRIEF
// calculate keypoints in all images

foreach I ∈ I do
CI← STAR(I)

// start GRIEF training

while n < ng do
// extract GRIEF features

foreach I ∈ I do
BI ← ∅ // clear descriptor set

foreach (cx, cy) ∈ CI do
BI ←{BI ∪GRIEF(I, cx, cy)}

// generate training samples

PC ,PF ← ∅ // initialize sample sets

foreach I, J ∈ I do
// calculate correspondences

if I , J then
// tentative correspondences

P ← match{BI,BJ}

// geometric constraints

(P′C ,P
′
F)← histogram voting (P)

// add results to sample sets

PC ← {PC ∪ P
′
C}

PF ← {PF ∪ P
′
F}

// establish fitness of δi by (4)

for i ∈ 0..255 do
f (δi)←

∑
PC

(1 − 2 di(.)) +
∑
PF

(2 di(.) − 1)

// increment iteration number

n← n + 1
// replace 10 least-fit comparisons

for i ∈ 0..9 do
δw ← arg minδ∈∆( f (δ)) // least fit δ
∆← {∆ \ δw} // gets replaced

∆← {∆∪ random δi} // by a random δ

5. Evaluation datasets

The feature evaluation was performed on five differ-
ent datasets collected by mobile vehicles over the course
of several months. The Planetarium dataset was gath-
ered on a monthly basis in a small forest area near
Prague’s planetarium in the Czech Republic during the
years of 2009 and 2010 [11]. The Stromovka dataset
comprises of 1000 images captured during two 1.3 km
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long tele-operated runs in the Stromovka forest park in
Prague during summer and winter 2011 [54]. The third
and fourth datasets, called ‘Michigan’ and ‘North Cam-
pus’, were gathered around the University of Michigan
North Campus during 2012 and 2013 [20]. Similarly to
the datasets gathered in Prague, the Michigan set covers
seasonal changes in a few locations over one year and
the North Campus dataset consists of two challenging
image sequences captured in winter and summer. The
fifth dataset, called ‘Nordland’, consists of more than
1000 images organised in two sequences gathered dur-
ing winter and summer on a ∼20 km long train ride in
northern Norway [18]. The datasets that we used for our
evaluation are publicly available at [21].

5.1. The Planetarium dataset

The Planetarium dataset was obtained by a P3-AT
mobile robot with a Unibrain Fire-i601c color camera.
At first, the mobile robot was manually driven through a
50 m long path and created a topological-landmark map,
where each topological edge was associated with a lo-
cal map consisting of image features. On the following
month, the robot used a robust navigation technique [11]
to repeat the same path using the map from the pre-
vious month. During each autonomous run, the robot
recorded images from its on-board camera and created
a new map. Data collection was repeated every month
from September 2009 until the end of 2010, resulting in
16 different image sequences [54].

Although the path started at an identical location ev-
ery time, the imprecision of the autonomous naviga-
tion system caused slight variations in the robot position
when traversing the path. Therefore, the first image of
each traversed path is taken from exactly the same posi-
tion, while the positions of the other pictures may vary
by up to ±0.8 m.

Although the original data contains thousands of im-
ages, we have selected imagery only from 5 different
locations in 12 different months, see Figures 2 and 3.

Six independent persons were asked to register the
images and to establish their relative horizontal dis-
placement, which corresponds to the relative robot ori-
entation at the times the images were taken. The re-
sulting displacements were checked for outliers (these
were removed) and the averaged estimations were used
as ground truth.

5.2. The Stromovka dataset

The Stromovka dataset was gathered by the same
robot as the Planetarium dataset. It consists of four
image sequences captured in different seasons along a

1.3 km long path through diverse terrain of the Stro-
movka park in Prague. The appearance of the environ-
ment between the two sequences changes significantly
(see Figure 4), which makes the Stromovka dataset es-
pecially challenging. The magnitude of the appearance
change should allow for better evaluation of the feature
extractors’ robustness to environment variations. Un-
like the Planetarium dataset, where the robot used a pre-
cise navigation technique, the Stromovka data collec-
tion was tele-operated and the recorded trajectories are
sometimes more than 2 m apart. The Stromovka dataset
exhibits not only seasonal variations, but also permanent
changes, e.g. some trees were cut down, see Figure 4.

5.3. The Michigan dataset
The Michigan Dataset was collected by a research

team at the University of Michigan for their work on im-
age features for dynamic lighting conditions [30]. The
dataset was gathered during 27 data-collection sessions
performed over 15 months around the North University
Campus in Ann Arbor, comprising 1232×1616 color
images captured from 5 different locations.

Since this dataset was not captured on an exactly reg-
ular basis and some months were missing, we selected
12 images of each place in a way that would favour their
uniform distribution throughout a year. Then, we re-
moved the uppermost and bottom parts of the images
that contain ground plane or sky and resized the rest to
1024×386 pixels while maintaining the same aspect ra-
tio, see Figures 5 and 6. The resulting dataset has the
same format as the Planetarium one and was evaluated
in exactly the same way.

However, the Michigan dataset was gathered around a
university campus and it contains less foliage and more
buildings than the Planetarium and Stromovka datasets.
Moreover, seasonal weather variations in Ann Arbor are
less extreme than the ones in Prague. Therefore, the ap-
pearance of the environment captured in the Michigan
dataset is less influenced by the naturally occurring sea-
sonal changes.

5.4. The North Campus dataset
The team of the Michigan university carried on with

their data collection efforts and made their ‘North Cam-
pus Long-Term Dataset’ publicly available [20]. This
large-scale, long-term dataset consists of omnidirec-
tional imagery, 3D lidar, planar lidar, and proprioceptive
sensory data and ground truth poses, which makes it a
very useful dataset for research regarding long-term au-
tonomous navigation. The dataset’s 27 sessions, which
are spread over 15 months, capture the university cam-
pus, both indoors and outdoors, on varying trajectories,

8



(a) December 2009 (b) April 2010 (c) October 2010

Figure 2: Examples of the seasonal variations at location II of the Planetarium dataset.

(a) Planetarium - location I (b) Planetarium - location III (c) Planetarium - location V

Figure 3: View from the robot camera at three different locations of the Planetarium dataset.

Figure 4: View from the robot camera at two locations of the Stromovka dataset.

(a) February 2012 (b) June 2010 (c) October 2012

Figure 5: Examples of the seasonal variations at location II of the Michigan dataset.

(a) Michigan - location I (b) Michigan - location III (c) Michigan - location IV

Figure 6: View from the robot camera at different locations of the Michigan dataset.
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Figure 7: View from the robot camera at two locations of the North Campus dataset.

and at different times of the day across all four sea-
sons. We selected two outdoor sequences captured by
the robot’s front camera during February and August
2012 and processed them in exactly the same way as the
images from the Michigan dataset. Thus, we obtained
two challenging image sequences in a format similar to
the Stromovka dataset, see Figure 7.

5.5. The Nordland dataset

Similarly to the North Campus and Stromovka, the
‘Nordland’ dataset consists of two challenging se-
quences captured during winter and summer. However,
this dataset was not gathered by a mobile robot, but by
a train-mounted camera that recorded the spectacular
landscape between Trondheim and Bodø in four differ-
ent seasons. Since the original footage contains four
ten-hour videos with more than 3 million images cap-
tured from the same viewpoint and angle, we had to
adapt the dataset for our purposes. First, we selected
1000 images covering 20 km of the train ride in winter
and summer. To emulate camera viewpoint variation,
we shifted and cropped the the winter images, so that
the winter/summer image pairs would overlap only by
∼ 85%, see Figure 8. Unlike in [18], where the images
are shifted by a fixed number of pixels, we used a vari-
able shift in both horizontal and vertical directions.

6. Evaluation

The goal of our evaluation is to test the suitability
of various image features for long-term visual teach-
and-repeat in changing environments. Our evaluation

assumes that the robot’s navigation is based on a teach-
and-repeat method that uses the visual data to correct
the robot’s orientation in order to keep it on the path
it has been taught previously [12, 14, 11, 10]. Since
these methods do not require full six degree-of-freedom
global localization, we evaluate the feature extraction
and matching algorithms in terms of their ability to es-
tablish the correct orientation of the robot under envi-
ronment and lighting variations. Since the proposed
evaluation is based on a measure of the feature extrac-
tor’s ability to establish the robot heading, we calculate
its ‘error rate’ as the ratio of incorrect to total heading
estimates. In our evaluation, we select image pairs from
the same locations but different times, extract and match
their features and estimate the (relative) robot orienta-
tion from the established correspondences. We consider
an orientation estimate as correct if it does not differ
from the ground truth by more than 35 pixels, which
roughly corresponds to 1 degree.

To determine the best features for the considered
scenario, we evaluate not only their invariance to sea-
sonal changes, but also their computational complex-
ity. Moreover, our evaluation also requires to select the
other components of the processing pipeline, which es-
timates the robot heading based on the input images.
In particular, we need to choose how to match the cur-
rently perceived features to the mapped ones, how to
determine the robot orientation based on these matches
and what training scheme to use for the GRIEF feature.

6.1. Feature matching schemes

To determine the best strategy for feature matching,
we compared the performance of two different match-
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Figure 8: Example images from the Nordland dataset. Notice the horizontal shift between the winter/summer image pairs.

ing schemes, which attempt to establish pairs between
the feature setsA and B extracted from the two images.
The first scheme, called a ‘ratio test’, searches the de-
scriptor space for two nearest neighbours b0,b1 ∈ B of
a given feature a0 ∈ A. A match is considered correct if
|a0−b0| < r |a−b1|, where r is typically chosen between
0.5 and 0.9 [4]. The second scheme, called a ‘symmet-
ric match’, considers a0 and b0 a pair if b0 is the nearest
neighbour of a0 in the set B and vice versa [55]. In our
experiments, we evaluated the performance of the ‘ratio
test’ matching with the r coefficient set to 10 different
values between 0.5 and 1.0. However, the ‘symmetric
match’ performed better and thus, the following results
presented use the ‘symmetric’ matching strategy.

6.2. Heading estimation

We also considered two different methods for deter-
mining the relative rotation of the camera. The first
method closely follows the classical approach used in
computer vision where known camera parameters and
correspondences between extracted and mapped fea-
tures are used to calculate the essential matrix, which
is factored to obtain the robot rotation. An alternative
method used in [12, 11] calculates a histogram of hor-
izontal (in image coordinates) distances of the tenta-
tive correspondences and calculates the robot orienta-
tion from the highest-counted bin. In other words, the
robot orientation is established from the mode of hori-
zontal distances of the corresponding pairs by means of
histogram voting. The latter method is less general, be-
cause it cannot cope with large viewpoint changes, but
was reported to perform better than the essential-matrix-
based method in teach-and-repeat scenarios [56]. Our

observations confirm the findings presented in [56], and
thus we chose to use the histogram voting method in our
evaluations.

We hypothesize that better performance of the his-
togram voting method is caused by the fact that un-
like the essential-matrix-based estimation, it does not
assume rigid scenes. Thus, it is more robust to object
deformations caused by snow, temperature variations or
vegetation growth.

6.3. GRIEF feature training

Before the actual evaluations, we tested four differ-
ent training schemes for the GRIEF feature. We evalu-
ated how much a GRIEF feature trained on a specific
location improves its performance across locations in
different environments and how many iterations of the
training algorithm 1 are required. Four training schemes
were considered:

Unsupervised, where the matched pairs are divided
into positive PC and negative PF training samples
(see Algorithm 1) by histogram voting, i.e. the
pairs that belong in the highest-rated bin constitute
the set PC and the others go to PC .

Supervised, where the division into PC and PF is
based on the ground-truth provided with the
dataset.

Hard-negative, which performs the GRIEF training
only on the image pairs that were registered in-
correctly, i.e. the results of the histogram voting
method do not match the ground truth.
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Reinforced, where the incorrectly-matched image
pairs influence the evaluation of the individual
comparisons 10× more strongly than correctly-
registered image pairs.

The advantage of the first training scheme is that it
only needs to know which images were taken at the
same locations, while the latter three schemes require
the dataset to be ground-truthed. We performed 10 000
iterations of each training scheme on the Planetarium
dataset and evaluated the performance of each gener-
ation on the Stromovka datasets. The results shown
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Figure 9: The performance of different training schemes of GRIEF:
Evolution of position estimation errors on the Stromovka and Plane-
tarium datasets (smoothed).

in Figure 9 indicate that at first, the ‘supervised’ and
‘hard-negative’ training schemes outperform the ‘unsu-
pervised’ one on the training dataset, but the situation
is reversed when the trained feature is tested on im-
ages from another environment. Moreover, we can see
that although the heading estimation error rate decreases
quickly during the first ∼500 training iterations, further
training improves the feature performance at a slower
rate.

We trained the GRIEF feature by running 10000 it-
erations of the ‘unsupervised’ training scheme on the
Planetarium dataset and validating its performance on
50 images of the Stromovka dataset. Based on this vali-
dation we selected the 8612th GRIEF generation for the
rest of our experiments. The evolution of the GRIEF fit-
ness and its performance improvement (i.e. heading es-
timation error relative to the BRIEF feature) are shown
in Figure 10. One iteration of the training algorithm
on the Planetarium dataset takes approximately 10 sec-
onds on an i7 machine. Thus, training the GRIEF se-
quence by iterating the algorithm 10000 times took ap-
proximately one day.

6.4. Evaluation procedure
First, the feature correspondences between each pair

of images from the same location were established by

GRIEF feature fitness
Heading estimation error ratio − Planetarium
Heading estimation error ratio − Stromovka
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Figure 10: GRIEF training process: GRIEF fitness and position esti-
mation error improvement on the Stromovka and Planetarium dataset.
The error is calculated relatively to the heading estimation error of
the BRIEF feature that is used to initialize the positions of the binary
comparisons of the GRIEF. Error rates are smoothed by sliding aver-
age.

(a) BRIEF comparisons (b) GRIEF comparisons

Figure 11: A sample of the initial (BRIEF) and trained (GRIEF) com-
parison pairs. The GRIEF comparisons favour shorter distances.

the ‘symmetric match’ scheme. Then, the correspond-
ing feature pairs with significantly different vertical im-
age coordinates were removed. After that, we build
a histogram of horizontal distances of the correspond-
ing pairs and find the most prominent bin. The aver-
age distance of all pairs that belong to this bin are used
as an estimate of the relative orientations of the robot
at the time instants when the particular images were
captured. These estimates are then compared with the
ground truth and the overall error is calculated as the ra-
tio of incorrect heading estimations to the total number
of image pairs compared.

The Michigan and Planetarium datasets contain 5
different locations with 12 images per location, which
means that there are 12 × 11 × 5/2 = 330 image pairs.
The evaluation of the Stromovka dataset is based on
1000 (winter/summer) images arranged in two image
sequences that cover a path of approximately 1.3 km,
which means that the dataset contains 500 image pairs.
The number of images in the North Campus and Nord-
land datasets is only slightly higher than in the Stro-
movka one, but their structure is the same, i.e. two long
image sequences from winter and summer.
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Figure 12: The dependence of heading estimation error rate on the number of features extracted. Dashed lines indicate that the given detector was
unable to extract the number of keypoints required.

6.5. Number of features
The error rate for estimating the correct heading is de-

pendent on the number of extracted features, which de-
pends on the setting of the ‘peak threshold’ of a particu-
lar feature detector. Our benchmarking software allows
to select the detector peak thresholds in such a way that
the detection method extracts a given number of features
per image. To show the dependence of the heading es-
timation error on the number of features extracted, we
evaluated the performance of the most popular image
features set to extract {100, 200, . . . , 1600} features per
dataset image. The results shown in Figure 12 demon-
strate how the number of extracted features influences
the ability of the method to correctly estimate the robot
heading. Figure 12 also indicates that in some cases, it
is not possible to reach a desired number of detected fea-
tures (see the dashed lines). This is because the STAR
detector does not extract enough features even if its peak
threshold is set to the minimal value and the SpG detec-
tor was evaluated in three settings with 100, 220 and 740
features. The figure indicates that the lowest heading
estimation error rates were achieved using the STAR/-
GRIEF and SpG/CNN image features.

Figure 12 also shows that the performance of the
features varies more for the North Campus and Stro-
movka datasets. This is caused by the fact that these
datasets do not match images gathered on a monthly
basis, but only from two opposite seasons, where the
appearance changes are more prominent and the images
are more difficult to register. To confirm this hypothesis,
we divided the images of the Planetarium and Michi-
gan datasets into two groups: ‘winter’ images, where
the trees lack foliage and ‘summer’ images, where tree
foliage is present. Then, we calculated the inter- and
intra-season registration error rates of the upright-root-
SIFT and STAR/GRIEF features. When matching im-
ages from the same season, both upright-root-SIFT and
STAR-GRIEF methods achieved error rates below 3%.
However, matching images across seasons by upright-

root-SIFT resulted in approximately 24% error, while
the STAR-GRIEF error rate was around 2%. This indi-
cates that the error rate improvement is caused by ability
of the STAR-GRIEF to register images with large per-
ceptual changes.

6.6. Combining different detectors and descriptors

The performance of the image features is influenced
by both the detector and descriptor phases. Although
in some cases, the detection and description algorithms
share the same data structures, which allows to speed
up the feature’s calculation (such as the integral im-
age in SURF), there is no reason why the detection and
description phases of different algorithms could not be
combined in order to obtain features with desired prop-
erties. For example, Matusiak and Skulimowski [57] re-
port that the combination of the FAST detector and SIFT
descriptor results in a computationally more efficient
feature with similar robustness to the original SIFT. This
lead us to test other detector/descriptor combinations of
the features that we use. Tables 1 to 5 contain the er-
ror rates of the feature extractor algorithms obtained by
combining different detectors and descriptors.

The results summarized in Tables 1 to 5 confirm
the high robustness of the STAR/GRIEF and SpG/CNN
combinations to seasonal changes. Moreover, the re-
sults also indicate that the default detector/descriptor
combinations are often not the best ones and one should
consider alternative combinations. For example, ex-
changing the detector phase of the root-SIFT algorithm
with the BRISK method dramatically improves invari-
ance to seasonal changes. Due to the high computa-
tional costs of the CNN descriptor, we evaluated it only
with the STAR and SpG detectors, since the first showed
the best results with the other descriptors and the latter
is a region detector particularly developed for combina-
tion with rich descriptors like CNN-based ones.
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Table 1: Error rates of various detector/descriptor combinations in the
Planetarium dataset, assuming 1600 features per image

GRIEF rSIFT SURF FREAK CNN
BRIEF SIFT BRISK ORB

SpG1 3.3 5.2 5.2 4.2 14.2 5.8 14.8 10.3 0.0
STAR 0.6 3.0 1.2 0.9 37.6 9.1 34.8 7.6 2.1
BRISK 0.3 2.4 0.9 0.9 34.5 8.5 26.4 7.3 —
uSIFT 2.4 9.1 7.9 9.7 47.0 18.2 36.7 10.0 —
SIFT 2.4 9.1 20.0 25.2 47.0 31.5 36.7 18.5 —
uSURF 0.3 2.4 3.0 2.1 16.4 0.9 17.3 5.2 —
SURF 0.3 2.4 3.0 2.4 16.4 14.5 17.3 20.3 —
ORB 2.1 9.1 6.1 6.1 13.3 6.1 29.4 9.7 —
FAST 2.4 4.2 2.1 2.1 43.6 11.2 31.2 7.6 —
MSER 3.9 11.5 10.0 6.4 30.6 10.3 34.5 18.2 —
GFTT 2.7 5.8 9.1 11.2 52.1 12.1 30.0 11.5 —

6.7. Computational efficiency

An important property of an image feature is the
amount of processing time required for its extraction
from an image and the amount of time it takes to match
it to the map. In our evaluations, we calculated the
times it takes to detect, describe and match the given
features and normalized this time per 1000 features ex-
tracted. The estimate is only coarse because the time
required for feature detection is more dependent on the
image size than on the number of features and the fea-
ture matching speed can be boosted by techniques like
approximate nearest neighbour [58]. Moreover, detec-

Table 2: Error rates of various detector/descriptor combinations in the
Michigan dataset, assuming 1600 features per image

GRIEF rSIFT SURF FREAK CNN
BRIEF SIFT BRISK ORB

SpG1 1.5 4.5 6.1 7.9 9.4 1.5 3.3 7.9 0.3
STAR 1.8 4.5 6.1 6.7 23.9 9.1 13.9 3.9 1.8
BRISK 1.5 3.0 3.9 5.5 14.2 3.0 12.1 4.2 —
uSIFT 8.5 9.7 9.4 10.6 35.2 13.0 27.9 11.5 —
SIFT 8.5 9.7 13.0 15.8 35.2 16.7 27.9 7.6 —
uSURF 1.5 2.4 7.3 8.5 8.8 2.1 3.3 5.8 —
SURF 1.5 2.4 3.9 5.5 8.8 5.8 3.3 8.2 —
ORB 15.5 20.0 24.8 28.5 25.8 18.8 24.2 20.9 —
FAST 7.3 8.8 8.5 9.1 20.9 6.1 15.2 9.4 —
MSER 16.1 21.8 13.6 15.5 27.6 14.5 32.4 21.8 —
GFTT 9.4 9.1 7.6 10.3 36.4 9.7 22.1 14.2 —

1The Superpixel Grid detector (SpG) used 740 keypoints.

Table 3: Error rates of various detector/descriptor combinations in the
Stromovka dataset, assuming 1600 features per image

GRIEF rSIFT SURF FREAK CNN
BRIEF SIFT BRISK ORB

SpG1 16.4 26.0 9.8 10.2 36.0 18.4 28.8 34.0 5.2
STAR 5.0 13.0 11.2 9.4 64.2 34.6 60.2 30.0 8.6
BRISK 8.6 15.0 7.2 7.0 60.2 25.8 45.8 32.6 —
uSIFT 16.2 23.4 24.0 25.8 68.4 44.2 65.4 30.2 —
SIFT 16.2 23.4 40.8 45.4 68.4 58.8 65.4 45.4 —
uSURF 9.2 12.8 8.0 7.8 42.8 12.8 36.2 29.8 —
SURF 9.0 12.8 15.2 13.6 42.8 42.2 36.2 57.8 —
ORB 21.4 28.8 11.8 12.2 27.6 20.6 43.8 23.2 —
FAST 9.6 12.8 17.2 14.0 63.2 30.8 54.4 26.2 —
MSER 23.4 39.6 26.6 21.8 63.8 35.6 59.2 51.6 —
GFTT 10.4 19.6 25.0 24.6 65.8 36.6 59.4 27.2 —

tors and descriptors of the same features often share data
structures, which means that if used together, the time
for their extraction is lower then the sum of the detec-
tion and description times indicated in Table 6. How-
ever, the statistics shown in Table 6 are still useful to
rank the algorithms according to their computational ef-
ficiency. The Table 6 shows the times to extract and
match the conventional image features on an i7 proces-
sor and the CNN features on an NVidia Titan X GPU.
We omitted the upright variants of SIFT and SURF as
well as root SIFT, because their computational time is
the same. The computational complexity of the GRIEF

Table 4: Error rates of various detector/descriptor combinations in
North Campus dataset, assuming 1600 features per image

GRIEF rSIFT SURF FREAK CNN
BRIEF SIFT BRISK ORB

SpG1 9.5 11.7 9.1 10.6 19.9 9.1 21.7 17.8 4.1
STAR 5.8 10.2 8.0 8.9 37.3 13.2 37.7 14.7 4.3
BRISK 6.1 8.0 6.1 6.7 28.4 10.8 32.8 13.2 —
uSIFT 16.7 25.2 27.1 30.4 54.4 29.1 48.4 27.8 —
SIFT 16.7 25.2 40.3 42.5 54.4 39.0 48.4 36.4 —
uSURF 6.3 7.6 8.2 9.5 21.2 6.1 17.1 8.3 —
SURF 6.1 7.6 11.9 13.2 21.2 20.6 17.1 17.4 —
ORB 25.8 34.9 31.2 31.9 45.6 27.6 53.4 31.2 —
FAST 15.6 18.7 20.2 21.9 51.6 26.0 47.5 25.0 —
MSER 27.3 36.2 23.0 24.3 46.2 26.0 48.4 37.3 —
GFTT 19.7 25.8 28.9 31.7 63.3 32.5 53.8 32.1 —

1The Superpixel Grid detector (SpG) used 740 keypoints.
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Table 5: Error rates of various detector/descriptor combinations in
Nordland dataset, assuming 1600 features per image

GRIEF rSIFT SURF FREAK CNN
BRIEF SIFT BRISK ORB

SpG1 5.1 6.7 1.3 1.5 6.7 5.5 8.6 21.9 0.9
STAR 0.4 1.7 1.7 1.3 18.7 2.5 9.0 7.8 1.3
BRISK 0.6 0.6 0.8 1.0 13.9 1.0 1.9 4.6 —
uSIFT 1.3 0.6 1.3 1.0 28.8 2.9 4.4 2.9 —
SIFT 1.3 0.6 2.9 2.9 28.8 6.9 4.4 2.5 —
uSURF 0.4 1.0 1.1 0.8 2.9 0.4 1.9 5.0 —
SURF 0.4 1.0 2.1 1.7 2.9 2.3 1.9 8.0 —
ORB 5.7 4.0 4.4 4.2 3.4 4.0 11.6 5.9 —
FAST 0.6 0.6 1.1 1.1 11.6 1.1 2.5 2.1 —
MSER 45.9 50.3 25.5 24.2 51.8 47.2 60.2 58.1 —
GFTT 2.1 2.1 1.7 2.3 33.5 2.7 3.2 5.0 —

1The Superpixel Grid detector (SpG) used 740 keypoints.

Table 6: Time required to detect, describe and match 1000 features by
the feature extractors used in our evaluation

Method
Time [ms] required to

detect describe match

SIFT 200 64 85
SURF 99 63 93
BRISK 63 5 64
ORB 8 6 58
BRIEF – 3 63
GRIEF – 3 60
FREAK – 15 58
CNN-CPU – 33000 1650
CNN-GPU – 3100 1650
MSER 75 – –
GFTT 16 – –
STAR 16 – –
FAST 9 – –
SPGrid 49 – –

descriptor is the same as the BRIEF one, which is not
surprising because these two algorithms differ only in
the choice of pixel positions used for brightness com-
parisons. Table 6 shows that the combination of the
STAR detector and (G)BRIEF descriptor is computa-
tionally inexpensive not only for the extraction itself,
but also for matching. It also indicates that the CNN
descriptor is computationally expensive – calculation
of a single descriptor takes 3ms on a GPU, which is
three orders of magnitude longer than BRIEF. More-

over, matching 1000 CNN descriptors takes more than
a second, which is also significantly slower compared
to the classic features. However, matching could be
speeded up by techniques tailored for high-dimensional
descriptors, e.g. binary locality-sensitive hashing [59].

6.8. Discussion
The results presented in Sections 6.5 to 6.7 indicate

that the CNN-based descriptors in combination with the
Superpixel Grid detector achieve low error rates even
with a low number of detected features. When using
a large number of keypoints, the performance of the
SpG/CNN and STAR/GRIEF features evens out, and
they both achieve low heading estimation error rates.
While the SpG/CNN performs better on the Michigan,
North Campus and Planetarium datasets, which contain
a higher number of man-made structures, the STAR/-
GRIEF achieves lower errors on the Stromovka and
Nordland datasets, which contain a larger amount of fo-
liage that exhibits significant appearance changes due
to seasonal factors. Compared to the CNN features, the
GRIEF is much faster to calculate even on an ordinary
CPU.

Our analysis assumes a teach-and-repeat scenario,
where a robot moves along a previously-taught path and
thus, the visual navigation method does not have to be
robust to large viewpoint changes. In a realistic sce-
nario, a robot might have to deviate from the taught
path, e.g. due to an obstacle. In order to deal with these
situations, the image features used should still be able
to handle small-scale viewpoint changes. Experiments
with ground [56] and aerial [60] robots have shown that
teach-and-repeat systems based on the STAR/BRIEF
feature routinely deal with position deviations of up to
1 meter.

Unlike SpG/CNN, which is designed for general use,
the STAR/GRIEF combination is not meant to han-
dle large viewpoint changes and one should be cau-
tious when applying it for general long-term naviga-
tion and localisation. For example, [61] evaluated the
performance of several image features in a scenario of
lakeshore monitoring, where the on-board camera aims
perpendicularly to the vehicle movement and thus, the
viewpoint changes are significant. The authors of [61]
concluded that in their scenario, the ORB feature, which
is based on BRIEF, slightly outperformed the other fea-
tures.

7. Conclusion

We report our results on the evaluation of image
feature extractors to mid- and long-term environment
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changes caused by variable illumination and seasonal
factors. Our evaluation was taken from the navigational
point of view – it was based on the feature extrac-
tors’ ability to correctly establish the robot’s orienta-
tion, and hence, keep it on the intended trajectory. The
datasets used for evaluation capture seasonal appear-
ance changes of three outdoor environments from two
different continents.

Motivated by previous works which indicated that
certain combinations of feature detectors and descrip-
tors outperform commonly used features, we based our
evaluation on combinations of publicly-available de-
tectors and descriptors. For example, substituting the
detection phase of the root-SIFT algorithm with the
BRISK method dramatically improves its invariance to
seasonal changes, while making the algorithm compu-
tationally more efficient. We noted that the BRIEF
descriptor based on bitwise comparisons of the pixel
intensities around a keypoint detected by the STAR
method performed better than most other detector/de-
scriptor combinations. To further elaborate on this re-
sult, we trained the comparison sequences that consti-
tute the core of the BRIEF descriptor on a limited num-
ber of images, obtaining a new feature, which we call
GRIEF.

The lowest registration error rates (2.4% and 3.0%)
were achieved by the SpG/CNN and STAR/GRIEF de-
tector/descriptor combinations, which makes these fea-
tures a good choice for vision-based teach-and-repeat
systems operating in outdoor environments for long pe-
riods of time. While the SpG/CNN performed better
in semi-urban areas, the performance of STAR/GRIEF
was slightly higher in environments with natural fea-
tures such as foliage, where it was trained on. More-
over, the STAR/GRIEF feature was faster to calculate,
which makes it suitable even for resource-constrained
systems. We hope that this evaluation will be useful for
other researchers concerned with long-term autonomy
of mobile robots in challenging environments and will
help them to choose the most appropriate image feature
extractor for their navigation and localization systems.
To allow further analysis of this problem, we provide
the aforementioned benchmarking framework and the
GRIEF training method as a documented, open-source
software package [21].
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Bearing-only Navigation, Journal of Field Robotics.

[12] Z. Chen, S. T. Birchfield, Qualitative vision-based path fol-
lowing, IEEE Transactions on Robotics and Automation-
doi:http://dx.doi.org/10.1109/TRO.2009.2017140.

[13] C. Valgren, A. J. Lilienthal, SIFT, SURF & seasons:
Appearance-based long-term localization in outdoor environ-
ments, Robotics and Autonomous Systems 58 (2) (2010) 157–
165.

[14] E. Royer, M. Lhuillier, M. Dhome, J.-M. Lavest, Monocular vi-
sion for mobile robot localization and autonomous navigation,
Int. Journal of Computer Vision.

[15] M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: binary ro-
bust independent elementary features, in: ICCV, 2010.

[16] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: An Effi-
cient Alternative to SIFT or SURF, in: International Conference
on Computer Vision, Barcelona, 2011.

[17] S. Leutenegger, M. Chli, R. Y. Siegwart, Brisk: Binary robust
invariant scalable keypoints, in: 2011 International conference
on computer vision, IEEE, 2011, pp. 2548–2555.

[18] P. Neubert, P. Protzel, Local region detector+ CNN based land-
marks for practical place recognition in changing environments,
in: ECMR, IEEE, 2015, pp. 1–6.
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