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Abstract We present a fast and precise vision-based
software intended for multiple robot localization. The
core component of the software is a novel and effi-
cient algorithm for black and white pattern detection.
The method is robust to variable lighting conditions,
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achieves sub-pixel precision and its computational
complexity is independent of the processed image
size. With off-the-shelf computational equipment and
low-cost cameras, the core algorithm is able to process
hundreds of images per second while tracking hun-
dreds of objects with millimeter precision. In addition,
we present the method’s mathematical model, which
allows to estimate the expected localization preci-
sion, area of coverage, and processing speed from the
camera’s intrinsic parameters and hardware’s process-
ing capacity. The correctness of the presented model
and performance of the algorithm in real-world con-
ditions is verified in several experiments. Apart from
the method description, we also make its source code
public at http://purl.org/robotics/whycon; so, it can be
used as an enabling technology for various mobile
robotic problems.

Keywords Localization · Mobile robotics ·
Computer vision · Swarm robotics

1 Introduction

Precise and reliable position estimation remains one
of the central problems of mobile robotics. While the
problem can be tackled by Simultaneous Localiza-
tion and Mapping approaches, external localization
systems are still widely used in the field of mobile
robotics both for closed-loop mobile robot control
and for ground truth position measurements. These
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external localization systems can be based on an
augmented GPS, radio, ultrasound or infrared bea-
cons, or (multi-) camera systems. Typically, these sys-
tems require special equipment, which might be pro-
hibitively expensive, difficult to set up or too heavy to
be used by small robots. Moreover, most of these sys-
tems are not scalable in terms of the number of robots,
i.e., they do not allow to localize hundreds of robots in
real time. This paper presents a fast vision-based local-
ization system based on off-the-shelf components.
The system is precise, computationally efficient, easy
to use, and robust to variable illumination.

The core of the system is a detector of black-and-
white circular planar ring patterns (roundels), similar
to those used for camera calibration. A complete local-
ization system based on this detector is presented. The
system provides estimation of the roundel position
with precision in the order of millimeters for distances
in the order of meters.

The detection with tracking of a single roundel pat-
tern is very quick and the system is able to process
several thousands of images per second on a com-
mon desktop PC. This high efficiency enables not only
tracking of several hundreds of targets at a camera
frame-rate, but also implementation of the method on
computationally restricted platforms. The fast update
rate of the localization system allows to directly
employ it in the feedback loop of mobile robots,
which require precise and high-frequency localization
information.

The system is composed of low-cost off-the-shelf
components only – a low-end computer, standard web-
cam, and printable patterns are the only required ele-
ments. The expected coverage, precision, and image
processing speed of the system can be estimated from
the camera resolution, computational power, and pat-
tern diameter. This allows the user to choose between
high-end and low-end cameras, estimate if a partic-
ular hardware platform would be able to achieve the
desired localization frequency, and calculate a suitable
pattern size for the user’s specific application.

Ease of the system setup and use are also driv-
ing factors of the proposed implementation, which
does not require user-set parameters or an intri-
cate set-up process. The implementation also con-
tains an easy tool for camera calibration, which,
unlike other calibration tools, does not require user
interaction. At the same time, the implementation is
proposed as a library, which can be integrated into

commonly used computer vision frameworks, such as
OpenCV.

The main intention of this paper is to present
the system principle, its theoretical properties and
real performance characteristics with respect to the
intended application. Therefore, we present a model
of the localization arising from theoretical analyses of
the vision system and experimental evaluation of the
system performance in real scenarios with regard to its
practical deployment.

2 Related Work

External localization systems are widely used in the
field of mobile robotics, either for obtaining ground
truth pose data or for inclusion in the control loop
of robots. In both scenarios, it is highly desirable
to have good precision and high-frequency measure-
ments. Here, both of these aspects are analysed in
related works and are specifically addressed in the
proposed system.

Localization systems for mobile robots comprise
an area of active research; however, the focus is gen-
erally on internal localization methods. With these
methods, the robot produces one or more estimates
of its position by means of fusing internal sensors
(either exteroceptive or proprioceptive). This estima-
tion can also be generally applied when either a map
of the environment exists a priori or when the map is
being built simultaneously, which is the case of SLAM
approaches [1]. When these internal localization sys-
tems are studied, an external positioning reference
(i.e., the ground truth) without any cumulative error
is fundamental for a proper result analysis. Thus,
this research area makes use of external localization
systems.

While the most well-known external localization
reference is GPS, it is also known that it cannot be
used indoors due to signal unavailability. This funda-
mental limitation has motivated the design of several
localization principles, which can be broadly divided
into two major groups by means of the type of sensors
used: active or passive.

In the former group, several different technologies
are used for the purpose of localization. One exam-
ple [2] of active sensing is the case of a 6DoF local-
ization system comprised of target modules, which
include four LED emitters and a monocular camera.
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Markers are detected in the image and tracked in
3D, making the system robust to partial occlusions
and increasing performance by reducing the search
area to the vicinity of the expected projection points.
Experiments with this system were performed using
both ground and aerial robots. The mean error of the
position estimation is in the order of 1 cm, while
the maximum error is around 10 cm. The authors
note that for uncontrolled lighting scenarios passive
localization systems appear to be more suitable.

Another active sensor approach is the NorthStar [3]
localization system, which uses ceiling projections
as a non-permanent ambient marker. By projecting a
known pattern, the camera position can be obtained by
reprojection. The authors briefly report the precision
of the system to be around 10 cm.

In recent works, the most widely used approach
is the commercial motion capture system from
ViCon [4]. This system is comprised of a series of
high-resolution and high-speed cameras, which also
have strong infra-red (IR) emitters. By placing IR
reflective markers on mobile robots, sub-millimeter
precision can be achieved with updates up to 250Hz.
Due to these qualities, ViCon has become a solid
ground-truth information source in many recent works
and, furthermore, has allowed development of closed-
loop aggressive maneuvers for UAVs inside lab envi-
ronments [5]. However, this system is still a very
costly solution, and therefore, it is not applicable to
every research environment. This issue has motivated

several works proposing alternative low-cost localiza-
tion systems.

Several passive vision-based localization methods
were also proposed in recent literature, using simple
planar printable patterns, which reduce significantly
the cost and difficulty of use and setup. Several of
these works employ augmented-reality oriented mark-
ers, which not only permit obtaining the pose of
the target but can also encode additional informa-
tion like target ID. In this area, the software libraries
most widely used for this purpose are ARTag [6]
and ARToolKit+ [7], both based on its predecessor
ARToolKit [8], see examples of patterns in Fig. 1.
These target detectors were used in several works in
order to obtain localization information about mobile
robots, either explicitly as a part of a pose estimation
system [9, 10] or as ground-truth data [11].

In [9], ARToolKit markers are used for obtaining
the pose of several ground robots. The homography
from 3D-to-2D space (ground floor) is computed by
defining the work area by placing four ad-hoc mark-
ers, which are manually detected in the image. In
more recent work, the authors proposed the ARTag [6]
system that was later extensively analysed in [12].
However, the analysis is focused on detection and con-
fusion rates, and it does not report the real accuracy
in position estimation. Similar systems are explored
in [13], but details of their precision are not reported.

One particular system, which is based on AR mark-
ers similar to ARTag and ARToolKit, is ArUco [14].

Fig. 1 Patterns used in
passive vision-based global
localization systems

(a) ARToolKit patterns (b) ARTag patterns

(c) SyRoTek
pattern

(d) The TRIP tag (e) The proposed
pattern
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The main aspects of this method are: easy integra-
tion into C++ projects, based exclusively on OpenCV
and a robust binary ID system with error correction
which can handle up to 1024 individual codes. The
detection process of AR markers in ArUco consists of:
an adaptive thresholding step, contour extraction and
filtering, projection removal and code identification.
When the intrinsic camera parameters are known, the
extrinsic parameters of the target can be obtained. Due
to the free availability of the implementation and lack
of performance and precision reports, this system is
analyzed in the presented work, see Section 6.5.

Since the previous pattern detectors were conceived
for augmented-reality applications, other works pro-
pose alternative target shapes, which are specifically
designed for vision-based localization systems with
high precision and reliability. Due to several positive
aspects, circular shaped patterns appear to be the best
suited as fiducial markers in external localization sys-
tems. This type of pattern can be found (with slight
variations) in several works [15–18].

The SyRoTek e-learning platform [19] uses a ring
shaped pattern with a binary tag (see Figure) to local-
ize up to fourteen robots in a planar arena. The pattern
symmetry is exploited to perform the position and ori-
entation estimation separately, which allows to base
the pattern localization on a two-dimensional convo-
lution. Although this convolution-based approach has
proven to be reliable enough to achieve 24/7 operation,
its computational complexity still remains high, which
lead to its implementation on alternative platforms
such as FPGA [20].

In [16], a planar pattern consisting of a ring sur-
rounding the letter “H” is used to obtain the relative
6DoF robot pose with an on-board camera and IMU
(Inertial Measurement Unit) to resolve angular ambi-
guity. The pattern is initially detected by binarization
using adaptive thresholding and later processing for
connected component labeling. For classifying each
component as belonging to the target or not, a neural
network (multilayer perceptron) is used. The input to
the neural network is a resized 14 × 14 pixel image.
After testing for certain geometric properties, false
matches are discarded. Positive matches correspond-
ing to the outer ring are processed by applying the
Canny edge detector and ellipse fitting, which allows
computation of the 5DoF pose. Recognition of the “H”
letter allows to obtain the missing yaw angle. The pre-
cision in 3D position is in the order of 1 cm to 7 cm

depending on the target viewing angle and distance,
which was at the maximum around 1.5 m.

Probably the most similar approach to the pro-
posed system in this work is the TRIP localization
system [17]. In TRIP, the pattern comprises of a
set of several concentric rings, broken into several
angular regions, each of which can be either black
or white. The encoding scheme, which includes par-
ity checking, allows the TRIP method to distinguish
between 39 patterns. For detecting the tags, adaptive
thresholding is performed and edges are extracted.
TRIP only involves processing edges corresponding
to projections of circular borders of the ring pattern,
which are detected using a simple heuristic. These
edges are used as input to an ellipse fitting method
and then the concentricity of the ellipses is checked.
TRIP achieves a precision similar to [16] in position
estimation (the relative error is between 1 % and 3 %),
but only a moderate performance (around 16 FPS

at the resolution 640 × 480) is achieved using an
1.6 GHz machine. The authors report that the adaptive
thresholding step is the most demanding portion of the
computation. To the best of our knowledge, there is no
publicly available implementation.

Finally, a widely used, simple and freely available
circular target detector can be found in the OpenCV
library. This “SimpleBlobDetector” class is based on
traditional blob detection methods and includes sev-
eral optional post-detection filtering steps, based on
characteristics such as area, circularity, inertia ratios,
convexity and center color. While this implemen-
tation is originally aimed for circular target detec-
tion, by tuning the parameters it is possible to find
elliptical shapes similar to the ones proposed in the
present work and thus it is compared to the proposed
implementation.

In this work, a vision-based external localization
system based on a circular ring (roundel) pattern is
proposed. An example of the pattern is depicted in
Fig. 1. The algorithm allows to initiate the pattern
search anywhere in the image without any perfor-
mance penalty. Therefore, the search is started from
the point of the last known pattern position. Since
the algorithm does not contain any phase that pro-
cesses the entire image, successful tracking causes
the method to process only the area occupied by
the pattern. Therefore, the algorithm’s computational
complexity is independent of the image size. This pro-
vides a significant performance boost, which allows
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to track thousands of patterns in real-time using a
standard PC. By performing an initial unattended cal-
ibrating step, where the reference frame is defined,
pose computation of ground robots moving on a plane
is performed with millimeter precision using an off-
the-shelf camera.

The real world performance of the proposed
method makes it highly competitive with the afore-
mentioned state-of-the-art methods. Moreover, its
computational complexity is significantly lower,
which makes the method superior for scenarios with
embedded computational resources and real-time con-
straints. These findings are supported by the exper-
imental results and a comparison with the selected
localization methods presented in Section 6.

3 Pattern Detection

The core of the proposed computationally efficient
localization system is based on pattern detection. Fast
and precise detection is achieved by exploiting prop-
erties of the considered pattern that is a black and
white roundel consisting of two concentric annuli with
a white central disc, see Fig. 1.

The low computational requirements are met by
the pattern detection procedure based on on-demand
thresholding and flood fill techniques, and gather-
ing statistical information of the pattern on the fly.
The statistical data are used in consecutive tests with
increasing complexity, which determine if a candidate
area represents the desired circular pattern.

The pattern detection starts by searching for a black
segment. Once such a segment is detected and passes
the initial tests, the segment detection for a white inner
disc is initiated at the expected pattern center.

Notice, that at the beginning, there is no prior
information about the pattern position in the image;
hence, the search for the black segment is started at
a random position. Later, in the subsequent detec-
tions, when a prior pattern position is available, the
algorithm starts detection over this area. For a suc-
cessfully re-detected (tracked) pattern, the detection
processes only pixels belonging to the pattern itself,
which significantly reduces the computation burden.
Since the method is robust (see following sections
for detection limits), tracking is generally successful
and thus the method provides very high computational
performance.

After the roundel is detected, its image dimen-
sions and coordinates are identified. Then, its three-
dimensional position with respect to the camera is
computed from its known dimensions and camera
re-projection techniques, and its coordinates are trans-
formed to a coordinate frame defined by the user, see
Section 4.

In this section, a detailed description of the pattern
detection based on an efficient thresholding is pre-
sented together with an estimation of the pattern center
and dimensions and a compensation of the incorrect
diameter estimation, which has a positive influence
to the localization precision. Moreover, a multiple
pattern detection capability is described in Section 3.6.

3.1 Segmentation

The pattern detection is based on an image seg-
mentation complemented with on-demand threshold-
ing that searches for a contiguous set of black or
white pixels using a flood-fill algorithm depicted in
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Algorithm 1. First, a black circular ring is searched for
in the input image starting at an initial pixel position
p0. The adaptive thresholding classifies the processed
pixel using an adaptively set value τ as either black
or white. If a black pixel is detected, the queue-based
flood-fill algorithm procedure is initiated to determine
the black segment. The queue represents the pixels of
the segment and is simply implemented as a buffer
with two pointers qstart and qend .

Once the flood fill is complete, the segment is
tested for a possible match of the outer (or inner)
circle of the pattern. At this point, these tests con-
sist of a minimum size (in terms of the number of
pixels belonging to the segment) and a roundness mea-
sure within acceptable bounds. Notice, that during
the flood-fill search, extremal pixel positions can be
stored. This allows to establish the bounding box of
the segment (bu and bv) at any time. Besides, after
finding a segment, the queue contains positions of all
the segment’s pixels. Hence, initial simple constraints
can be validated quickly for a fast rejection of false
positives.

In the case where either test fails, the detection for
further segments continues by starting from the next
pixel position (i.e., a pixel at the position p0+1). How-
ever, no redundant computation is performed since the
previous segment is labeled with a unique identifier.

The first roundness test is based on the pattern’s
bounding box dimensions and number of pixels. The-
oretically, the number of pixels s of an elliptic ring
with outer and inner diameters do, di and dimensions
bu, bv should be

s = π/4bubv
d2
o − d2

i

d2
o

. (1)

Therefore, the tested segment dimensions and area
should satisfy the inequality

ρtol >

∣
∣
∣bubvπ/4

ρexp

s
− 1

∣
∣
∣ , (2)

where ρexp equals 1 for white and 1 − d2
i /d

2
o for

black segments. The value of ρtol represents a tol-
erance range, which depends on the camera radial
distortion and possible pattern deformation and spatial
orientation.

If a black segment passes the roundness test, the
second flood-fill search for the inner white segment
is initiated from the position corresponding to the
segment centroid. If the inner segment passes the min-
imum size and roundness tests, further validation tests

are performed. These involve the concentricity of both
segments, their area ratio, and a more sensitive circu-
larity measure (discussed in the following sections). If
the segments pass all these complex tests, the pattern is
considered to be found and its centroid position will be
used as a starting point p0 for the next detection run.
The overall pattern detection algorithm is depicted in
Algorithm 2.

3.2 Efficient Thresholding

Since the segmentation looks only for black or
white segments, the success rate of the roundel
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detection depends on the threshold parameter τ ,
especially under various lighting conditions. There-
fore, we proposed to adaptively update τ when-
ever the detection fails according to a binary search
scheme over the range of possible values. This tech-
nique sets the threshold τ consecutively to values
{1/2, 1/4, 3/4, 1/8, 3/8, 5/8 . . .} up to a pre-defined
granularity level, when τ is reset to the initial value.

When the pattern is successfully detected, the
threshold is updated using the information obtained
during detection in order to iteratively improve the
precision of segmentation:

τ = μouter + μinner

2
, (3)

where μouter , μinner correspond to the mean bright-
ness value of the outer and inner segments,
respectively.

The computationally intensive full image thresh-
olding is addressed by on-demand processing over
each pixel analyzed during the detection. At the very
first access, the RGB values of the image are read
and a pixel is classified as either black or white and
the classification result is stored for further re-use in
the subsequent steps. Moreover, whenever the tracking
is successful, only the relevant pixels are thresholded
and processed by the two-step flood fill segmentation.
Clearing the per-pixel classification memory area is
also efficiently performed by only resetting the val-
ues inside the pattern’s bounding box. As a result, the
detection step is not directly dependent on the input
image resolution, which provides a significant perfor-
mance gain. If the tracking is not successful, extra
memory accesses resulting from this on-demand strat-
egy are negligible compared to a full-image threshold-
ing approach.

3.3 Pattern Center and Dimensions

After the black and white segments pass all the ini-
tial tests, a more sophisticated roundel validation is
performed. The validation is based on a more precise
roundness test using estimation of the ellipse (pattern)
semiaxes. All the information to calculate the ellipse
center u, v and the semiaxes e0, e1 is at the hand,
because all the pattern pixels are stored in the flood-
fill queue. Hence, the center is calculated as the mean
of the pixel positions. After that, the covariance matrix
C, eigenvalues λ0, λ1, and eigenvectors v0, v1 are

established. Since the matrix C is two-dimensional, its
eigen decomposition is a matter of solving a quadratic
equation. The ellipse semiaxes e0, e1 are calculated
simply by

ei = 2λ1/2
ivi. (4)

The final test verifying the pattern roundness is per-
formed by checking if the inequality

ρprec >

∣
∣
∣
∣
π
|e0||e1|

s
− 1

∣
∣
∣
∣

(5)

holds, where s is the pattern size in the number of
pixels. Unlike in the previous roundness test (2), the
tolerance value of ρprec can be much lower because
(4) establishes the ellipse dimensions with subpixel
precision.

Here, it is worth mentioning that if the system runs
on embedded hardware, it might be desirable to cal-
culate C using integer arithmetic only. However, the
integer arithmetic might result in a loss of precision,
therefore C should be calculated as

C = 1

s

s−1∑

i=0

(

uiui uivi
uivi vivi

)

−
(

uu uv

uv vv

)

, (6)

where ui and vi are the pattern’s pixel coordinates
stored in the queue and u, v denote the determined
pattern center.

3.4 Pattern Identification

The ratio of the patterns’ inner and outer diameters
does not have to be a fixed value, but can vary between
the individual patterns. Therefore, the variable diame-
ter ratio can be used to distinguish between individual
circular patterns. If this functionality is required, the
system user can print patterns with various diameter
ratios and use these ratios as ID’s.

However, this functionality requires to relax the tol-
erance ranges for the tests of inner/outer segment area
ratio, which might (in an extreme case) cause false
positive detections. Variable inner circle dimensions
also might mean a smaller inner circle or a thinner
outer ring, which might decrease the maximal distance
at which the pattern is detected reliably. Moreover,
missing a priori knowledge of the pattern’s diameter
ratio means that compensation for incorrect diame-
ter estimation is not possible, which might slightly
decrease the method’s precision.
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3.5 Compensation of Incorrect Diameter Estimation

The threshold separating black and white pixels has
a significant impact on the estimation of the pattern
dimensions. Moreover, the pixels on the black/white
border are affected by chromatic aberration, nonlin-
ear camera sensitivity, quantization noise, and image
compression, see Fig. 2. As a result, the border-
line between the black ring and its white back-
ground contains a significant number of misclassified
pixels.

The effect of pixel misclassification is observed
as an increase of the ratio of white to black pixels
with increasing pattern distance. The effect causes the
black ring to appear thinner (and smaller), which has
a negative impact on the distance estimation. How-
ever, the inner and outer diameters of the pattern are
known, and therefore, the knowledge of the true do
and di can be used to compensate for the aforemen-
tioned effect. First, we can establish the dimensions
of the inner white ellipse e0i and e1i in the same way
as in Section 3.3. We assume the pixel misclassifi-
cation enlarges the inner ellipse semiaxes e0i, e1i and
shrinks the outer semiaxes e0o, e1o by a value of t.
Since the real inner di and outer do pattern diameters
are known, the true ratio of the areas can be expressed
as

d2
i

d2
o

= r = (e0i − t)(e1i − t)

(e0o + t)(e1o + t)
, (7)

where t can be calculated as a solution of the quadratic
equation

(1− r)t2− t (e0ie1i + re0oe1o)+e0ie1i − re0oe1o = 0.

(8)

The ambiguity of the solution can be resolved sim-
ply by taking into account that the corrected semiaxes
lengths e0i − t , e1i − t must be positive. The com-
pensation of the pattern diameter reduces the average
localization error by approximately 15 %.

3.6 Multiple Target Detection

The described roundel detection method can also be
used to detect and track several targets in the scene.
However, a single threshold τ is not well suited to
detecting more patterns because of illumination vari-
ances. Besides, other differences presented across the
working area may affect the reflectance of the pattern
and thus result in different gray levels for different
patterns, which in turn requires a different τ value for
each pattern. Individual thresholding values not only
provide detection robustness but also increase preci-
sion by optimizing pixel classification for each target
individually.

Multiple targets can be simply detected in a
sequence one by one, and the only requirement
is to avoid detection of the already detected pat-
tern. This can be easily avoided by modifying the
input image after a successful detection by paint-
ing over the corresponding pixels, i.e., effectively
masking out the pattern for subsequent detection
runs.

Detection of multiple targets can also be considered
in parallel, e.g., for obtaining additional performance
gain, using a multi core processor. In this case, it
is necessary to avoid a possible race condition and
mutual exclusion has to be used for accessing the
classification result storage.

An initial implementation of the parallel approach
using OpenMP and multi-processor system did not
yield a significant speedup. Furthermore, due to the

Fig. 2 Undesired effects affecting the pattern edge



J Intell Robot Syst

high performance of detection of a single pattern,
the serial implementation provides better performance
than the parallel approach. Therefore, all the presented
computational results in this paper are for the serial
implementation.

4 Pattern Localization

The relative pattern position to the camera module is
calculated from the parameters established in the pre-
vious step. We assume that the radial distortion of
the camera is not extreme and the camera intrinsic
parameters can be established by the method [21] or
similar. With this assumption, the pattern’s position is
computed as follows:

1. The ellipse center and semiaxes are calculated
from the covariance matrix eigenvectors and
transformed to a canonical camera coordinate
system.

2. The transformed parameters are then used to
establish coefficients of the ellipse characteristic
equation, which is a bilinear form matrix (also
called a cubic).

3. The pattern’s spatial orientation and position
within the camera coordinate frame is then
obtained by means of eigen analysis of the cubic.

4. The relative coordinates are transformed to a two-
or three-dimensional coordinate frame defined by
the user.

A detailed description of the pattern position esti-
mation is presented in the following sections.

4.1 Ellipse Vertices in the Canonical Camera System

The ellipse center u′c, v′c and semiaxes e′0, e′1 are estab-
lished in a canonical camera form. The used canon-
ical form is a pinhole camera model with unit focal
lengths and no radial distortion. The transformation
to a canonical camera system is basically a transform
inverse to the model of the actual camera.

First, we calculate the image coordinates of
the ellipse vertices a0,1 and co-vertices b0,1, and
transform them to the canonical camera coordi-
nates a′0,1, b′

0,1. The canonical coordinates of the
(co)vertices are then used to establish the canonical
center and canonical semiaxes. This rather compli-
cated step is performed to compensate for the radial

distortion of the image at the position of the detected
ellipse.

Since the ellipse center u and semiaxes e0, e1
are known, calculation of the canonical vertices
a′0,1 and co-vertices b′

0,1 is done simply by adding
the semiaxes to the ellipse center and transforming
them:

a′0,1 = g′
(

(u± e0x − cx)/fx, (v ± e0y − cy)/fy
)

b′
0,1 = g′

(

(u± e1x − cx)/fx, (v ± e1y − cy)/fy
) ,

where g′ is the radial undistortion function and fx,y ,
cx,y are the camera focal lengths and optical cen-
ter, respectively. Using the canonical position of the
ellipse vertices, the ellipse center u′, v′ and axes e′0, e′1
are then calculated as

e′0 = (a′0 − a′1)/2
e′1 = (b′

0 − b′
1)/2

u′
c = (a′0 + a′1 + b′

0 + b′
1)/4

.

After this step, we have all essential variables to
calculate the ellipse characteristic equation.

4.2 Ellipse characteristic equation

Notice that each point u, v lying on an ellipse satisfies
the characteristic equation of an ellipse:

⎛

⎝

u′
v′
1

⎞

⎠

T ⎛

⎝

qa qb qd
qb qc qe
qd qe qf

⎞

⎠

⎛

⎝

u′
v′
1

⎞

⎠ = XTQX = 0, (9)

where Q is called a conic. Thus, the parameters of the
matrix Q are calculated from the ellipse center and
axes as follows:

qa = +e′0ue′0u/|e′0|2 + e′0ve′0v/|e′1|2
qb = +e′0ue

′
0v/|e′0|2 − e′0ue

′
0v/|e′1|2

qc = +e′0ue′0u/|e′1|2 + e′0ve′0v/|e′0|2
qd = −u′cqa − v′cqb
qe = −u′cqb − v′cqc
qf = +qau

′2
c + qcv

′2
c + 2qbu′cv′c − 1

. (10)

4.3 Pattern Position

Once the conic parameters Q are known, the posi-
tion and orientation of the pattern can be obtained
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by means of eigenvalue analysis [22]. Let the Q
matrix eigenvalues and eigenvectors be λ0, λ1, λ2 and
q0, q1, q2, respectively. Since Q represents an ellipse,
its signature is (2, 1) and we assume that λ0 ≥ λ1 >

0 > λ2. According to [16], the position of the circle
can be calculated as:

xc=± do√−λ0λ2

(

q0λ2

√

λ0 − λ1

λ0 − λ2
+q2λ0

√

λ1 − λ2

λ0 − λ2

)

,

where do is the circular pattern diameter. The ambigu-
ity of the sign can be resolved by taking into account
that the pattern is located within the camera field of
view. Thus, if the first component of the xc vector is
negative, the vector x is simply inverted.

4.4 Transformation to the Global Coordinates

The position xc of the circular pattern established
in the previous step is in a camera centered coordi-
nate frame. Depending on the particular application
scenario, our system allows to transform the pattern
coordinates to a 3D or 2D coordinate frame defined
by the user. The user just places four circular patterns
in the space covered by the camera and provides the
system with their real positions.

4.4.1 Global Coordinate Frame – 3D Case

In the case of the 3D localization, the three patterns at
positions x0, x1, x2 define the coordinate origin and x
and y axes, respectively. The transformation between
the global x = (x, y, z)T and camera centered xc =
(xc, yc, zc)

T coordinate systems can be represented as

x = T (xc − t0) ,

where t0 equals x0 and T is a similarity transformation
matrix.

The user can define the coordinate system simply
by putting three “calibration” patterns in the cam-
era field of view and designating the pattern that
defines the coordinate system origin t0 and the x and
y axes. Using the pattern positions (let us define them
as x0, x1, x2, respectively), the system calculates the
transformation between the camera and global coordi-
nate systems, i.e., the vector t0 and matrix T. Estab-
lishing the translation vector t is straightforward – it
corresponds to the camera coordinates of the pattern
at the global coordinate origin, i.e., t = x0.

The x and y axes of the coordinate frame are defined
by vectors t1 = x1−x0 and t2 = x2−x0, respectively.
Since we assume an orthonormal coordinate system,
the z axis vector can be simply calculated as a cross
product t3 = t1 × t2. From an algebraic point of view,
the matrix T represents a transformation of the vector
x′ = x − t to a coordinate system defined by the basis
t1, t2, t3. Therefore, the matrix T can be calculated
simply as

T =
⎛

⎝

t1x t2x t3x
t1y t2y t3y
t1z t2z t3z

⎞

⎠

−1

. (11)

Having established the vector t and matrix T, any
point in the camera coordinate frame can be trans-
formed to the coordinate frame defined by the user.

When the user places four patterns in the camera
field of view, four independent coordinate transfor-
mations are calculated using each pattern triplet. The
pattern position x ′ is then calculated as their mean,
which results in increased system accuracy.

4.4.2 Global Coordinate Frame – 2D Case

Two-dimensional localization can be generally more
precise than full three-dimensional localization. This
is because the estimation of the pattern position
depends mainly on the pattern distance, especially in
cases when the pattern image is small. Estimation of
the pattern distance can be simply avoided if all the
patterns are located only in a plane, e.g., ground robots
operating on a floor.

In this case, the transformation from the image
coordinates to an arbitrary world plane is a homogra-
phy, and (homogeneous) spatial coordinates x of the
patterns can be calculated directly from their canon-
ical coordinates u′ simply by x = Hu′, where H is
a 3×3 homography matrix. Similarly to the case of
three-dimensional localization, the user can define H
just by placing four patterns in the camera field of
view and providing the system with their positions in
the desired coordinate frame.

5 Sensor Model

In this section, we present three mathematical models
that can be used to estimate the expected performance
of the system. The main purpose of these models is
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Fig. 3 Geometry of the
operational space

to support the selection of the most suitable camera,
processing hardware, and pattern size according to the
particular application scenario. The first model calcu-
lates the localization system coverage from the pattern
dimensions, camera resolution, and field of view. The
second set of equations provides estimation of the
localization precision based on the camera parameters,
pattern dimensions, and required coverage. Finally,
the third model estimates the necessary computational
power to track the given number of patterns at the
desired frame rate.

5.1 Localization System Coverage

Regarding the practical deployment of the localiza-
tion system, its most critical property is its coverage or
“operational space”, i.e., the space where the pattern
is reliably detected and localized. The dimensions of
the operational space are affected by the camera focal
length and radial distortion, image resolution, pattern
diameter, and pattern spatial orientation.

For the sake of simplicity, the effect of radial distor-
tion on the shape of the operational space is neglected
and an ideal pinhole camera is assumed. Considering
this ideal model, the operational space has a pyrami-
dal shape with its apex close to the camera, see Fig. 3.
The parameters of the operational space are the mini-
mal and maximal detectable distances vmin, vmax and
base dimensions vy, vz.

A pattern can be detected if it “fits” in the image
and its central part and black ring are recognizable.
Therefore, the pattern image dimensions must be

lower than the camera resolution, but higher than a
certain value. To estimate the dimensions, we assume
the camera focal lengths fx, fy and radial distor-
tion parameters have been established by a calibration
tool1, e.g., MATLAB calibration toolbox or similar
software based on [21]. Then, the width and height
wp, hp of the pattern in pixels can be calculated by

wp = fx
do

x
cos(ϕ), hp = fy

do

x
cos(ψ), (12)

where x is the pattern distance from the image plane,
do is the pattern diameter, and ϕ and ψ represent the
pattern tilt.

5.1.1 Minimal Localization Distance

The minimal distance vmin, at which the pattern can
be detected regardless of its orientation, is given as

vmin = do max
(
fx
w
,
fy
h

)

, (13)

where w and h is the image horizontal and vertical
resolution in pixels, respectively. One has to realize
that the fractions fx/w and fy/h correspond to the
camera field of view. Hence, the camera field of view
remains the same regardless of the current resolution
settings and the distance vmin can be considered as
independent of the camera resolution.

1Such a tool is also a part of the proposed system available
online at [23].
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5.1.2 Maximal Localization Distance

The pattern has to be formed from a sufficient number
of pixels to be detected reliably. Therefore, the pattern
pixel dimensions have to exceed a certain value that
we define as D. The value of D has been experimen-
tally established as 12. We also found that D might
be lower than this threshold for exceptionally good
lighting conditions; however, D = 12 represents a
conservative value. Having D, the maximal detectable
distance v′max of the pattern can be calculated as

v′max = do

D
min(fx cos(ϕ), fy cos(ψ)). (14)

Notice a higher camera resolution increases the focal
lengths fx and fy ; so, setting the camera resolution
as high as possible maximizes the area covered by the
localization system.

On the other hand, (14) does not take into account
the camera radial distortion and it is applicable only
when the pattern is located near the optical axis. The
radial distortion causes the objects to appear smaller
as they get far away from the optical axis. Thus, the
distance v′max at which the pattern is detected along
the optical axis is higher than the maximal detectable
distance vmax of the pattern located at the image cor-
ners. Therefore, the dimension vmax of the operational
space is smaller than v′max by a certain factor and vmax

can be calculated as

vmax = do

D
min(kxfx cos(ϕ), kyfy cos(ψ)), (15)

where kx and ky represent the effect of the radial dis-
tortion. The values of kx and ky can be estimated from
the differential of the radial distortion function close
to an image corner:

kx = 1 + dg(rx, ry)

dx

= 1 + 2k1rx + 4k2(r
3
x + rxr

2
y )+ . . .

ky = 1 + dg(rx, ry)

dy

= 1 + 2k1ry + 4k2(r
3
y + ryr

2
x )+ . . .

,

where rx and ry can be obtained from the camera opti-
cal axis and focal lengths as cx/fx and cy/fy . For a
consumer grade camera, one can assume that the radial

distortion would not shrink the pattern more than by
10 %; so, a typical value of kx,y would be between 0.9
and 1.0.

5.1.3 Base Dimensions

Knowing the maximal detectable distance vmax , the
dimensions of the localization area “base” vy and vz
can be calculated as

vy = w
vmax

fx
− 2do, vz = h

vmax

fy
− 2do, (16)

where w and h are the horizontal and vertical resolu-
tions of the camera used, respectively. Considering a
typical pattern, the value of do is much smaller than
the localization area and can be omitted.

With Equations (13), (15), and (16) the user can cal-
culate the diameter of the pattern and camera parame-
ters from the desired coverage of the system. It should
be noted that the presented model considers a static
configuration of the module and the detected pattern.
Rapid changes of the pattern’s relative position may
cause image blur, which might affect vmax and restrict
the operational space.

5.2 Localization System Precision

Another important property of the localization sys-
tem is the precision with which the system provides
estimation of the pattern position. The precision of
the localization is directly influenced by the amount
of noise in the image and uncertainty in the cam-
era parameters. The position estimation error also
depends on the system operational mode, i.e., it is dif-
ferent for the three-dimensional and two-dimensional
position estimations. The expected localization preci-
sion is discussed in the following sections for both the
2D and 3D cases.

5.2.1 Two-dimensional Localization by Homography

For the 2D localization, the pattern position is esti-
mated simply from its center image coordinates. In
the case of a ideal pinhole camera, the calibration
procedure described in Section 4.4 should establish
the relation between the image and world planes.
Therefore, the precision of the position estimation is
affected mainly by the image radial distortion. Since
the uncertainties of the radial distortion parameters are
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known from the camera calibration step, the error of
radial distortion for x and y can be estimated from the
differential of the radial distortion function

ηx = x(ε1r+ε2r
2+ε5r

3+2ε3y)+ε4(r+2x2)

ηy = y(ε1r+ε2r
2+ε5r

3+2ε4x)+ε3(r+2y2)
, (17)

where ηx and ηy are the position relative errors, ki are
camera distortion parameters, εi are their uncertain-
ties, and r = x2 + y2. The overall relative error of the
two-dimensional localization can be expressed as

ηhom = ηrad =
√

η2
x + η2

y . (18)

Note that (17) does not take into account the cam-
era resolution. Therefore, the model suggests that
higher resolution cameras will not necessarily achieve
better localization precision. This is further investi-
gated in Section 6.2.2, where experimental results are
presented. Also, note that in the standard camera cal-
ibration implementations, values of εi are meant as
99.7 % confidence intervals. To calculate the average
error, i.e., the standard deviation, one has to divide
ηhom by three.

5.2.2 Full Three-dimensional Localization

In the full 3D localization, the main source of the
localization imprecision is incorrect estimation of the
pattern distance. Since the pattern distance is inversely
proportional to its diameter in pixels, smaller patterns
will be localized with a higher error. The error in
the diameter measurement is caused by quantization
noise and by the uncertainty in the identification of the
camera’s intrinsic parameters, especially in the param-
eters of the image radial distortion. One can roughly
estimate the expected error in the pattern distance
estimation as

η3D = 
f

fx
+
e0

xfx

d0
+ ηrad, (19)

where 
f is the error of the focal length estimation,

e represents the error of the ellipse axis estimation
due to image noise, and ηrad is the relative error of the
radial distortion model. While 
f and ηrad can be cal-
culated from the camera calibration parameters, 
e0

is influenced by a number of factors that include cam-
era thermal noise, lighting, motion blur etc. However,
its current value can be estimated on the fly from the
variance of the calibration (see Section 4.4.1) patterns’
diameters.

In our experiments, the typical value of 
e0 was
around 0.15 pixels. This means that for a well-
calibrated camera, the major source of distance esti-
mation error is the ratio of image noise to the pattern
projection size. Since the pattern image size (in the
number of pixels) grows with the camera resolution,
the precision of localization can be increased simply
by using a high resolution camera or a larger pattern.

5.3 Computational Requirements

From a practical point of view, it is also desirable
to estimate the necessary computational hardware
needed to achieve a desired frame rate, especially for
an embedded solution. The time needed to process
one image can be roughly estimated from the num-
ber of patterns, their expected size, image dimensions,
tracking failure rate, and the computer speed. For the
sake of simplicity, we can assume that the time to pro-
cess one frame is a linear function of the amount of
processed pixels:

t = (

k0 + k1(sp(1 − α)+ siα)
)

no, (20)

where k0 represents the number of operations needed
per pattern regardless of its size (e.g., a coordinate
transformation), k1 is a constant corresponding to the
number of operations per pixel per pattern, sp is the
average size of the pattern in pixels, α is the expected
failure rate of the tracking, si is the image size in
pixels, n is the number of tracked patterns, and o is
the number of operations per second per processor
core given as a ratio o = c/m of the entire proces-
sor MIPS (Million Instructions Per Second) m and the
number of processor cores c. The constant k0 has been
experimentally estimated as 5.105 and k1 as 900. The
average size sp of a pattern can be calculated from the
camera parameters, pattern diameter, and average dis-
tance from the camera by (12). Thus, if the user wants
to track 50 patterns with 30 pixel diameter using a
machine with two cores and 53 GIPS (Giga Instruc-
tions Per Second), the expected processing time per
image would be 1.2 ms, which would allow to process
about 800 images per second.

The speed of the localization algorithm depends on
the failure rate of the tracking α. Typically, if the pat-
tern displacement between two frames is smaller than
the pattern radius, the tracking mechanism causes the
method to process only the pixels belonging to the pat-
tern. This situation corresponds to α being equal to
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zero. Thus, assuming that the pattern is not moving
erratically, the method’s computational complexity is
independent of the processed image size. Moreover,
the smaller the pattern image dimensions, the faster
the processing rate is. Of course, equation (20) gives
only a coarse estimate, but it might give the user
a basic idea of the system processing speed. Equa-
tion (20) has been experimentally verified and the
results are presented in Section 6.3.

6 Experiments

This section is dedicated to presentation of the exper-
imental results verifying the mathematical models
established in Section 5. First, the model of the oper-
ational space defined by (15) and (16) is tested to see
if it corresponds to a real situation. After that, the real
achievable precision of the localization is evaluated
according to the model (17) and (19). Then, the real
computational requirements of the algorithm are mea-
sured using different computational platforms and the
model in (20) is validated. Finally, the performance
of the proposed localization system is also evaluated
according to the precise motion capture system and
compared with the AR tag based approach ArUco [14]
and the simple OpenCV circle detector.

6.1 Operational Space for a Reliable Pattern Detection

The purpose of this verification is to validate the
model describing the area covered by the localization
system. In Section 5.1, the covered space is described
as a pyramid with base dimensions vy, vz and a height
denoting the maximal detectable distance vmax .

6.1.1 Maximal Detection Distance

A key parameter of the operational space is the maxi-
mal distance for reliable pattern detection vmax that is
described by (14). The following experimental setup
has been used to verify the correctness of this model.
Two different cameras have been placed on a mobile
platform SCITOS-5 with precisely calibrated odom-
etry. The proposed localization system was set up to
track three circles, each with a different diameter. The
platform has been set to move away from the circles
at a constant speed and its distance from the patterns
was recorded whenever a particular pattern was not

detected. The recorded distances are considered as the
limit v′max of the system operational space. The same
procedure was repeated with the patterns being slanted
by forty degrees (Table 1).

During this experiment, the patterns were located
approximately at the image center. As previously
noted in Section 5.1.2, additional correction constants
kx, ky have been introduced in Section 5.1.2 to take
into account radial distortion effects, which cause the
detected pattern to appear smaller when located at
the image edges. The augmented model considering
the radial distortion was verified in an additional
experiment using a pattern with diameter 2.5 cm posi-
tioned at the image corner. In this case, the maximal
detected distance was reduced by 7 % for a Logitech
QuickCam Pro camera and by 7 % for an Olympus
VR-340. These results are in a good accordance with
the model introduced in Section 5.1.2, where the val-
ues of kx and ky were estimated to be between 0.9 and
1.0.

6.1.2 Base Dimensions

The dimensions of the coverage base are modeled by
(16), which provides the dimensions of the expected
coverage vy and vz. This model was verified using
a similar setup to the previous experiment. The cam-
era was placed to face a wall at a distance established
in the previous experiment and four patterns were
placed at the very corners of the image. This procedure
was repeated for three different sizes of the pattern.
The operation space dimensions, both measured and
calculated by (16), are summarized in Table 2.

Table 1 Maximal distance for a reliable pattern detection

Distance [m]

Camera Pattern Measured Predicted

type do[cm]
0◦ 40◦ 0◦ 40◦

Logitech 2.5 1.4 1.3 1.6 1.3

QC Pro 5.0 3.3 2.8 3.2 2.5

7.5 4.4 3.9 4.9 3.7

Olympus 2.5 6.8 6.2 6.7 5.1

VR-340 5.0 13.2 11.4 13.4 10.3

7.5 19.8 16.8 20.1 15.4
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Table 2 Dimensions of the operational space

do Dimensions [m]

[cm]
Measured Predicted

vmax vy vz vmax vy vz

2.5 1.6 2.1 1.6 1.5 1.9 1.4

5.0 3.0 3.9 3.0 3.0 4.0 3.0

7.5 4.5 5.9 4.5 4.4 5.8 4.4

6.2 Localization Precision

The real localization precision, which is probably the
most critical parameter of the localization system, was
established experimentally using a dataset collected
in the main entrance hall of the Faculty of Mechani-
cal Engineering at the Charles square campus of the
Czech Technical University. The entrance hall offers
enough space and its floor tiles form a regular rect-
angular grid with dimensions 0.625 × 1.250 m. The
regularity of the grid was verified by manual mea-
surements and the established precision of the tile
placement is around 0.6 mm.

We placed several patterns on the tile inter-
sections and took five pictures with three differ-
ent cameras from two different viewpoints (Figs. 4
and 5). The cameras used were a Creative Live!
webcam, Olympus VR-340, and Canon 550D set to
1280×720, 4608×3456, and 5184×3456 pixel reso-
lutions, respectively. The viewpoints were chosen at
two different heights; so, the images of the scene were
taken from a “side” and a “top” view.

Fig. 4 Side view of the experiment

Fig. 5 Top view of the experiment

First, three or four of the patterns in each image
were used to define the coordinate system. Then, the
resulting transformation was utilized to establish the
circle global positions. Since the circles were placed
on the tile corners, their real positions were known
precisely. The Euclidean distances of these known
positions to the ones estimated by the system were
considered as the measure of the localization error.

6.2.1 Three-dimensional Localization Precision

In this test, the system was set to perform full three-
dimensional localization. In this model, the most
significant cause of the localization error is the
wrong distance estimation of the pattern (as noted in
Section 5.2.2). The distance measurement is caused
by an imperfect estimation of the pattern semiaxes
lengths, see (19). The equation indicates that a cam-
era with a higher resolution would provide a better
precision.

The measured and predicted average and maxi-
mal localization errors for the individual pictures are
shown in Table 3. The table also contains the predicted
average localization error ηpred calculated by (3) for
a comparison of the model and the real achieved
precision.

6.2.2 Two-dimensional Localization Precision

In the case of indoor ground robot localization, we
can assume that the robots move in a plane. The
plane where the robots move and the image plane
form a homography, which was previously defined by
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Table 3 Precision of 3D position estimation

Image Abs. [cm] Rel. [%]

camera view εavg εmax ηpred ηavg ηmax

Webcam side 5.7 19.5 1.04 0.90 2.96

Webcam top 3.7 12.1 0.68 0.61 1.83

VR-340 side 1.9 6.5 0.47 0.35 1.02

VR-340 top 3.2 11.0 0.54 0.50 1.39

C-550D top 2.5 7.4 0.30 0.43 1.46

four reference patterns during the system setup. The
real achievable precision of two-dimensional local-
ization was measured within the same experimental
scenario as the previous full 3D case. The average
and maximal measured localization errors are depicted
in Table 4. Similar to the previous case, the table
contains the predicted mean error ηpred calculated
by (17).

The results indicate that the assumption of ground
plane movement increases the precision by an order
of magnitude. Moreover, the results also confirm that
increasing the image resolution does not necessarily
increase the localization precision. Rather, the pre-
cision of localization is influenced mostly by the
camera calibration imperfections. This fact confirms
the assumptions presented in Section 5.2.1.

6.3 Computational Requirements

The purpose of this experiment was to evaluate the
estimation of the computational requirements pro-
vided by the model proposed in Section 5.3. Thus, the
hypothesis is to test if the algorithm processing speed
estimation (20) conforms to the proposed assump-
tions. Moreover, in this experiment, we also verify if

Table 4 Precision of 2D position estimation

Image Abs. [cm] Rel. [%]

camera view εavg εmax ηpred ηavg ηmax

Webcam side 0.23 0.62 0.03 0.04 0.08

Webcam top 0.18 0.68 0.04 0.03 0.09

VR-340 side 0.64 1.40 0.11 0.12 0.22

VR-340 top 0.68 2.08 0.19 0.11 0.32

C-550D top 0.15 0.33 0.03 0.03 0.07

the algorithm complexity depends only on the pattern
size rather than on the image resolution.

6.3.1 Processing Time vs. Image and Pattern
Dimensions

The model of computational requirements assumes
that once the circles are reliably tracked, the sys-
tem processing time is independent of the image
size. In such a case, the image processing time is a
linear function of the overall number of pixels belong-
ing to all the patterns. Three synthetic datasets were
created to verify this assumption. The first dataset
consists of images with variable resolution and one
circular pattern with a fixed size. The image reso-
lutions of the second dataset are fixed, but the pat-
tern diameter varies. Both pattern and image dimen-
sions of the third dataset images are fixed; however,
the number of patterns in each image ranges from
one to four hundred. Each image of each dataset
was processed one thousand times and the average
time to track all the roundels in the image was cal-
culated. The average processing time is shown in
Fig. 6.

The presented results clearly show that the image
processing time is proportional to the number of pix-
els occupied by the tracked circular patterns and does
not depend on the processed image dimensions. More-
over, the results demonstrate the scalability of the
algorithm, which can track four hundred robots more
than one hundred times per second. The aforemen-
tioned tests were performed on a single core of the
Intel iCore5 CPU running at 2.5 GHz and accompa-
nied with 8 GB of RAM.

6.3.2 Processing Time Using Different Platforms

From a practical point of view, processing images
at a speed exceeding the camera frame rate is not
necessary. Rather, the algorithm might be deployed
on systems with slower processing units. Thus, one
should be able to establish what kind of computational
hardware is needed for a particular setup. This can
be roughly estimated using the time to process one
image by means of (20). Three real world datasets
and five different platforms, including two credit-card
sized computers, were used to verify the model in a
realistic setup.
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Fig. 6 Influence of the number of tracked patterns, pattern and image sizes on the method’s speed

– The “small” dataset consists of one thousand
images of a static pattern, which occupies approx-
imately seven hundred pixels, i.e., 0.1 % of the
image’s total area.

– The “large” dataset is similar, but with a larger,
sixty-pixel diameter pattern, occupying approxi-
mately 0.3 % of image pixels.

– The algorithm performance with these two
datasets (“small” and “large”) is relevant in
scenarios where the tracked objects are moving
slowly and the camera is in a static position.

– The “fast” dataset contains 130 images of a fast
moving pattern with a variable size. The dataset
was tailored to cause failure of the tracking mech-
anism in one case. Thus, the performance of the
algorithm with this dataset is similar to cases
when the camera is not stationary or the tracked
objects are moving quickly.

The average processing time per image for each
dataset was measured and calculated by (20). The
results summarized in Table 5 indicate the correctness
of the model described in Section 5.3.

6.4 Comparison with a Precise Localization System

The real achievable precision of the localization sys-
tem has been reported in Section 6.2; however, only
for experiments with static targets, where the pat-
terns were placed at the predefined positions. Such a
setup provides verification of the precision for sce-
narios where the system tracks slowly moving robots.
On the other hand, rapid movement of the tracked tar-
gets introduces additional effects, which might have a
considerable impact on the system precision. First, the

Table 5 Required image processing time

Processing time [ms]

CPU Measured Predicted

Dataset: small large fast small large fast

i-5 2450M 0.04 0.10 0.37 0.04 0.12 0.35

Atom N270 0.30 0.72 3.25 0.33 0.89 2.68

Pentium M 0.20 0.45 1.44 0.17 0.48 1.45

Odroid U2 0.27 0.89 2.76 0.29 0.79 2.86

Raspb. Pi 1.10 4.00 15.8 1.34 3.66 11.0
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Table 6 Localization accuracy of a moving target

Mode Abs. [cm] Rel. [%]

εavg εmax ηavg ηmax

2D 1.2 4.2 0.4 1.5

3D 3.1 11.2 1.2 4.4

captured images can be affected by motion blur and
deformation caused by the camera’s rolling shutter.
Besides, there might be a delay in position estima-
tion because standard USB cameras deliver the images
with a delay caused by the interface’s limited band-
width. Therefore, we consider an additional experi-
ment to evaluate the impact of these factors on the real
performance of the presented global localization sys-
tem. We consider a precise reference system and set
up our localization system in an area where a high-
precision motion capture system is installed and which
is able to track multiple targets2. The motion capture
system provides positions of the tracked targets 250
times per second with a precision up to 0.1 mm; so,
it can be considered as a ground truth for our position
measurements.

Four reference targets were placed in the area and
a common coordinate system was calculated for both
systems. After that, four sequences of targets moving
at speeds up to 1.2 m/s were recorded by a Logitech
QuickCamPro and the commercial motion capture
system. Euclidean distances of target positions pro-
vided by both systems were taken as a measure of
our system accuracy. The mean precisions of two-
and three-dimensional localization were established as
1.2 cm and 3.1 cm, respectively (Table 6). Although
the system’s relative accuracy is lower that in the static
tests presented in Section 6.2, centimeter precision
is still satisfactory for many scenarios. The error is
caused mostly by the image blur because of a long
exposure rate set by the camera internal control. Care-
ful setting of the camera exposure and gain parameters
might suppress this effect. In fact, such a tuning has
been made for localization of flying quadrotors, see
Section 7.1.

It is also worth to mention that even though the
commercial system is able to localize rapidly moving
targets with a higher precision, its setup took more

2Human Performance Centre at the University of Lincoln

than thirty minutes while the presented system is pre-
pared in a couple of minutes (just placing four patterns
to establish the coordinate system).

6.5 Comparison with Other Visual Localization
Systems

The advantages and drawbacks of the presented local-
ization system are demonstrated by a comparison of
its performance with the well-established localiza-
tion approaches based on AR markers and OpenCV.
The performance of AR-based markers has been mea-
sured using the ArUco [14] library for detection and
localization of multiple AR markers (similar to the
ones used in ARTag and ARToolKit systems). A
comparison with the OpenCV circular pattern detec-
tion is based on the OpenCV’s “SimpleBlobDetec-
tor” class. The precision, speed, and coverage of all
three systems were established in a similar way as
described in the previous sections. For the sake of
simplicity, we will refer to the presented system as
WhyCon.

6.5.1 Precision Comparison

The localization precision of the ArUco-, OpenCV-,
and WhyCon-based localization methods was
obtained experimentally by the method described
in Section 6.2. The comparison was performed on
4608×3456 pixel pictures taken by an Olympus
VR-340 Camera from two different (side and top)
viewpoints.

The achieved results are presented in Table 7.
The WhyCon position estimation error is significantly
lower than the error of ArUco and OpenCV in both
the two- and three-dimensional localization scenarios.

Table 7 Localization precision comparison

Relative error [%]

mode WhyCon ArUco OpenCV

view avg max avg max avg max

2D side 0.12 0.19 0.20 0.41 0.52 1.03

top 0.12 0.32 0.22 0.37 0.77 1.62

3D side 0.31 1.10 0.63 2.52 − −
top 0.33 1.04 1.08 2.90 − −
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Moreover, we found that the OpenCV’s blob radius
calculation was too imprecise to reliably estimate the
pattern distance and could not be used for the full 3D
localization.

6.5.2 Performance Comparison on Different
Platforms

The computational performance of the three evaluated
systems was compared for three different platforms.
The methods’ performance was compared using two
datasets similarly to the evaluation scenario described
in Section 6.3.2. The slow dataset contains an easy-to-
track pattern while for the fast datasets about 1 % of
the images are tailored to cause a tracking failure.

The results presented in Table 8 indicate that the
proposed algorithm is capable of finding the pat-
terns approximately one thousand times faster than
the traditional methods. Even in the unfavorable
case where the patterns cannot be reliably tracked,
the method outperforms ArUco and OpenCV hun-
dred times. The performance ratio is even better for
small embedded platforms with limited computational
power. This property is favorable for deployment in
the intended applications, especially under real-time
requirements.

6.5.3 Range and Coverage Comparison

The AR fiducial markers are primarily intended for
augmented reality applications and in a typical sce-
nario, the localized marker is situated close to the cam-
era. Therefore, the AR marker-based systems are not
tuned for a reliable detection of distant patterns with

Table 8 Image processing time comparison

Processing time [ms]

CPU ArUco OpenCV WhyCon

Dataset: fast slow fast slow fast slow

i5 2450M 19 19 63 62 0.35 0.04

Pentium M 121 119 329 329 1.00 0.18

Odroid U2 148 149 371 366 0.93 0.28

Raspb. Pi 875 875 1795 1759 6.59 1.21

small image dimensions. Thus, the range and cover-
age of the AR marker-based systems would be lower
compared to WhyCon. On the other hand, OpenCV’s
circular blob detector can detect small circular
patterns.

To estimate the ArUco and OpenCV detectors
maximal range, we have established the minimal
size (in pixels) that the tags need to have in order
to be detected reliably. The sizes that correspond
to the minimal pattern diameter D in the Equa-
tion (15) were established in a similar way as
described in Section 6.1.1. While the OpenCV detec-
tor can find blobs larger than 12 pixels, the ArUco
detector requires the AR marker side to be longer
than 25 pixels. Therefore, ArUco’s maximal detection
range is less than a half of WhyCon’s or OpenCV’s
range.

7 Practical Deployment

In this section, we present an overview of several
research projects where the proposed circle detection
algorithm has been successfully employed. This prac-
tical deployment demonstrates the versatility of the
presented localization system. A short description of
each project and comment about the localization per-
formance is presented in the following sub-sections.

7.1 UAV Formation Stabilization

In this setup, the circle detection algorithm was con-
sidered for a relative localization and stabilization of
UAV formations operating in both indoor and outdoor
environments. A group of quadrotors are supposed to
maintain a predefined formation by means of their
relative localization. Each quadrotor UAV carries a
circular pattern and an embedded module [24] running
the localization method, see Fig. 7.

Thus, each UAV is able to detect other quadrotors in
its vicinity and maintain a predefined relative position.
Although the UAV’s movements are relatively fast,
we did not observe significant problems caused by
image blur and the system detected the patterns reli-
ably. This scenario demonstrates the ability to reliably
detect circular patterns despite their rapid movements
and variable lighting conditions. Moreover, it proved
its ability to satisfy real-time constraints when running
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Fig. 7 Decentralized
localization of quadrotor
formation performed by the
presented method. Courtesy
of the GRASP laboratory,
PENN

on computationally constrained hardware. The preci-
sion of the relative localization was in the order of
centimeters [24].

7.2 Birds-eye UAV-based Localization System

The algorithm has also been used for relative local-
ization of ground robots, which were supposed to
maintain a predefined formation shape even if they
lack direct visibility among each other. In this setup,
one robot of the formation carried a heliport with
the Parrot AR.Drone [25] quadrotor, which can take
off and observe the formation from above using a
downward-pointing camera. Each ground robot had a
roundel pattern, which is elliptical rather than circu-
lar to provide also an estimate of the robot orientation.
Using the roundel detection algorithm, the position
and heading of the ground robots are provided by the
flying quadrotor while it maintains its position above
the formation.

Moreover, the heliport was designated by a circular
pattern, which makes it possible to autonomously land
the quadrotor after the mission end, see Fig. 8. Despite
the relatively low resolution (168×144) of the UAV’s
downward-looking camera and its rapid movements,

Fig. 8 Mixed UAV-UGV robot formation
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the overall localization precision was approximately
5 cm.

7.3 Autonomous Docking of Modular Robots

The Symbrion and Replicator projects [26] investi-
gate and develop novel principles of adaptation and
evolution of symbiotic multi-robot organisms based
on bio-inspired approaches and modern computing
paradigms. The robot organisms consist of large-scale
swarms of robots, which can dock with each other
and symbiotically share energy and computational
resources within a single artificial life form. When
it is advantageous to do so, these swarm robots can
dynamically aggregate into one or many symbiotic
organisms and collectively interact with the phys-
ical world via a variety of sensors and actuators.
The bio-inspired evolutionary paradigms combined
with robot embodiment and swarm-emergent phe-
nomena enable the organisms to autonomously
manage their own hardware and software
organization.

In these projects, the proposed localization
algorithm has been used as one of the methods for
detecting power sources and other robots, see Fig. 9.
The method demonstrated its ability to position
the robot with a sub-millimeter precision, which is
essential for a successful docking. The method’s
deployment in this scenario demonstrated not only its

precision, but also its ability to run on computationally
constrained hardware.

7.4 Educational Robotics

SyRoTek [19] is a remotely accessible robotic labora-
tory, where users can perform experiments with robots
using their Internet connectivity. The robots operate
within a flat arena with reconfigurable obstacles and
the system provides an overview of the arena from an
overhead camera. The project has been used for edu-
cation and research by several institutions in Europe
and Americas. An important component of SyRoTek
is the localization system providing estimation of the
real robots’ positions.

Originally the localization was based on a con-
volution algorithm. Even though it is computation-
ally demanding and rather imprecise, it demonstrated
suitability for 24/7 operation. After replacement of
this original localization system by the presented
roundel-based system, the precision of the local-
ization was improved. Moreover, the computational
requirements were decreased as well [27]. In this
deployment, the roundel pattern is formed from
ellipses where the inner ellipse has slightly different
dimensions, see Fig. 10, which allows to distinguish
between individual robots. This use case demon-
strates the ability of the system to operate in 24/7
mode. In addition, using different dimensions of

Fig. 9 Symbrion/Replicator
robots during docking
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Fig. 10 A top-down view
to the SyRoTek arena

the inner ellipse allows to distinguish between 14
SyRoTek robots.

7.5 Ground Truth Assessment in Mobile Robot
Navigation

BearNav (originally SURFNav) is a visual based
navigation system for both ground [28] and aerial
mobile [29] robots. The method is based on con-
vergence theorem [30], which states that map-based
monocular navigation does not need full localiza-
tion, because if the robot heading is continuously
adjusted to turn the robot towards the desired path,
its position error does not grow above certain lim-
its even if the position estimation is based only on
proprioceptive sensing affected by drift. The afore-
mentioned principle allows to design reliable and

computationally inexpensive camera-based navigation
methods.

The presented roundel based localization system
was used to provide a continuous and indepen-
dent measurement of the robot position error, which
allowed to verify the convergence theorem and bench-
mark the individual navigation algorithms in terms of
their precision, see Fig. 11. The system proved to be
useful especially for aerial robots [29], which, unlike
the ground robots, cannot be simply stopped for a
manual position measurement.

7.6 Autonomous Charging in Long-term Scenarios

The STRANDS project [31] aims to achieve intelli-
gent robot behaviour in human environments through
adaptation to, and the exploitation of, long-term

Fig. 11 Reconstructed
trajectory of a mobile robot
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Fig. 12 SCITOS-5 platform near its charging station. Notice
the three o’s of the label

experience. The project approach is based on a
deeper understanding of ongoing processes affecting
the appearance and structure of the robot’s environ-
ment. This will be achieved by extracting qualitative
spatio-temporal knowledge from sensor data gath-
ered during months of autonomous operation. Control
mechanisms that will exploit these structures to yield
adaptive behaviour in highly demanding scenarios will
be developed.

The circle detection method is used in the project
as an initial solution of localization-related problems
before more sophisticated implementations take its
place. One of such deployments is the localization of
the robot during its approach to a charging station,
which has been solved by placing three patterns in the
charging area, see Fig. 12.

8 Conclusion

We present a fast and precise vision-based system
intended for multiple robot localization. The system’s
core component is based on a novel principle of circu-
lar roundel detection with computational complexity
independent of the processed image size. The result-
ing system allows to localize swarms composed of

several hundreds of robots with millimeter (2D) or
centimeter (3D) precision, while keeping up with stan-
dard camera frame rates. In addition, we provide a
model to calculate the sufficient camera and com-
puter parameters to achieve the desired localization
precision, coverage and update rate, which support
potential users to decide which kind of equipment is
needed for their particular setup.

The most notable features of the system are its
low computational requirements, ease of use, and the
fact that it works with cheap, off-the-shelf equipment.
The system has been deployed already in a number
of international mobile robotic projects concerning
distributed quad rotor localization [24], visual based
autonomous navigation [30], decentralized formation
control [25], long-term scenarios [31], evolutionary
swarm [26], and educational [19] robotics. Since the
system has already proved to be useful in a variety of
applications, we publish its source code [23]; so, other
roboteers can use it for their projects. The experiments
indicate that the presented system is three orders of
magnitude faster than traditional methods based on
OpenCV or AR markers while being more precise and
capable of detecting the markers at a greater distance.

In the future, we plan to increase the precision and
coverage of the system by using multiple cameras. We
will plan to improve the tracking success rate by pre-
dicting the position of the target by considering the
dynamics of the tracked object.
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