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a b s t r a c t

In this paper we present a vision-based navigation system for mobile robots equipped with a single, off-the-

shelf camera in mixed indoor/outdoor environments. A hybrid approach is proposed, based on the teach-and-

replay technique, which combines a path-following and a feature-based navigation algorithm. We describe

the navigation algorithms and show that both of them correct the robot’s lateral displacement from the

intended path. After that, we claim that even though neither of the methods explicitly estimates the robot

position, the heading corrections themselves keep the robot position error bound. We show that combination

of the methods outperforms the pure feature-based approach in terms of localization precision and that

this combination reduces map size and simplifies the learning phase. Experiments in mixed indoor/outdoor

environments were carried out with a wheeled and a tracked mobile robots in order to demonstrate the

validity and the benefits of the hybrid approach.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Autonomous navigation can be roughly described as the process

of moving safely along a path between a starting and a final point.

In mobile robotics, different sensors have been used for this purpose,

which has led to a varied spectrum of solutions. Active sensors such

as sonars [1], laser range finders [2] and radars [3] have been used in

autonomous navigation methods. These sensors are inherently suited

for the task of obstacle detection and can be used easily because they

directly measure the distances from obstacles to the robot.

Other sensors that are becoming a standard part in mobile robotic

systems, particularly in field robotics, are visual sensors. Quality cam-

eras have become increasingly affordable, they are small and can pro-

vide high resolution data in real time. They are passive and therefore

do not interfere with other sensors. Unlike range sensors, they can not

only be used to detect obstacles, but also to identify forbidden areas

and navigate mobile robots using human-defined rules (i.e. keep off

the grass). Such forbidden areas are not obstacles, since they are in the

same plane as the path, but should be considered as non-traversable.

Moreover, and probably more important, nowadays computational

power required by image processing techniques is readily available
✩ This paper has been recommended for acceptance by G. Sanniti di Baja.
∗ Corresponding author. Tel.: +54 1145763300.
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n consumer hardware. For these reasons, in recent years vision-based

avigation for mobile robots has been a widely studied topic.

Many visual navigation methods generally rely on the extraction

f salient visual features, using algorithms such as well-known SIFT

scale invariant feature transform) or SURF (speeded up robust fea-

ures), among others. These are then used as external references from

hich information about the structure of the surrounding environ-

ent and/or the ego-motion of the robot is estimated.

A classical approach to visual navigation is known as teach-and-

eplay. This technique is closely related to visual servoing [4,5], where

he task is to reach a desired pose using vision for control feedback.

everal teach-and-replay works employ visual features as landmarks

o guide the autonomous navigation. A particularly successful work

as been presented by Furgale and Barfoot [6]. This method uses a

tereo-camera to build a manifold map of overlapping submaps as

he robot is piloted along a route. Each submap represent a metric re-

onstruction of a portion of the environment. The use of local submaps

llows the rover to faithfully repeat long routes without the need for

n accurate global environment reconstruction.

In contrast to metric reconstruction of the environment, the au-

hors of Krajník et al. [7], and Chen and Birchfield [8] present a simplis-

ic monocular navigation algorithm that performs autonomous navi-

ation without building metric maps, so-called appearance-based or

ualitative navigation. In their approach, the robot steering is calcu-

ated directly from horizontal displacement of the currently perceived

nd previously mapped image features. The article of Krajník et al. [7]
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over time.
ontains a mathematical proof of the stability of their feature-based

avigation.

In recent years, teach-and-replay methods have been studied for

oth terrestrial and aerial robots. On the one hand, many works use

etric reconstruction techniques, such as stereo-based triangulation

roposed by Ostafew et al. [9] and Pfrunder et al. [10]. On the other

and, several works still employ solely appearance-based navigation

11–14].

The main drawback of the aforementioned methods lies in the fact

hat the robot workspace is limited only to the regions mapped during

he training step. The user has to guide the robot all around the entire

ath before performing autonomous navigation, which may represent

very tedious process, especially in large outdoor environments. We

rgue that the mathematical proof presented in Krajník et al. [7] is not

imited only to feature-based map-and-replay navigation methods.

his fact should allow to design hybrid navigation systems that use

oth map-and-replay and map-less reactive navigation methods.

An example of such a method is a real-time monocular path fol-

owing algorithm that allows a mobile robot navigate through semi-

tructured or unstructured paths [15]. This method uses a probabilis-

ic approach similar to the proposed by Dahlkamp et al. [16], learning

visual model of the nearby road using an area in front of the ve-

icle as a reference. The traversable path appearance is modeled as

mixture of Gaussians and the classification between navigable or

ot navigable area is done of segments rather than pixel level. From

he previously determined navigable area, a path center trajectory is

stimated and using a motion control law the robot is guided to the

enter of the detected path and maintain it away from path edges

uring navigation.

Though different solutions have been proposed to address the in-

oor or outdoor vision-based navigation, there are not many works

hat solve the problem when it comes to mixed indoor and outdoor

nvironments. The main contribution of this work is to propose a hy-

rid navigation method that can work successfully both in indoor and

utdoor environments while overcoming the aforementioned draw-

acks of existing methods, which are generally oriented towards a

pecific scenario. The proposed method combines a teach-and-replay

eature-based method [7] and a segmentation-based approach for fol-

owing paths [15]. Both methods have the same principle behind: to

orrect the heading of the robot to guide the autonomous navigation.

When transitioning to environment contains semi-structured

aths, the visual path-following method is used. When there is no path

o follow, a map is built using feature-based approach. By recording

dometric information for establishing the length of each segment in

he map, a large mixed indoor/outdoor environment can be traversed

utonomously. We claim that even though neither of the two meth-

ds explicitly estimates the robot position in the environment, the

eading corrections themselves keep the robot position error bound.

n other words, by combining two navigation methods based on the

ame principle, i.e. heading correction, a hybrid navigation approach

hich takes the best of each can be obtained, without loosing accu-

acy in autonomous navigation. In this paper this is proved in both

heoretical and practical point of views.

The remainder of this paper is organized as follows: the hy-

rid navigation approach is presented in Section 2, description of

he feature-based method is introduced in Section 3, description of

he segmentation-based method for following path is introduced in

ection 4, the convergence analysis is performed in Section 5, evalu-

tion criteria and experimental results are discussed in Section 6 and

he paper is concluded in Section 7.

. Hybrid visual navigation

The main idea behind the proposed hybrid navigation method is to

ombine two separate approaches, feature-based and segmentation-
ased, by alternating between one and the other depending on the

art of the environment the robot is at.

Both of the aforementioned methods correct the robot’s heading

o it is steered towards the intended path. However, neither of the

ethods can compute the localization of the robot within the envi-

onment. Odometry is only used to determine the relative position

f the robot within a segment, and therefore, when the robot has to

hange between the two navigation methods. One might argue that

he cumulative nature of the odometric error would eventually cause

he navigation method to fail. However, Krajník et al. [7] indicate that

he heading correction itself can compensate for odometric errors

nd keep the robot position error bound. In this article, we will ex-

end this idea of heading compensation to a broader set of monocular

avigation systems based on robot’s heading correction. In particular,

e will show that stability of bearing-only navigation is not limited

o landmark-based localization only, but can be applied to reactive

ath-following methods as well.

The advantages of the proposed approach compared to the one

resented in Krajník et al. [7] can be summarized as follows:

. It is not necessary to teach the robot the entire trajectory in areas

where a detectable path is present. This significantly simplifies and

shortens the learning phase.

. Since the path-following method is adaptive, it is more robust

to environment appearance variations compared to the feature-

based method. This increases the overall reliability of the naviga-

tion.

. The path following method reduces robot positioning error faster

than the feature-based approach. Thus, combination of both meth-

ods allows for a more precise navigation.

. The path following method does not need to store information

about the entire edge that is to be traversed. Rather than that, it

just need information about the path texture, which dramatically

reduces spatial requirements for storage of the topological map

especially when traversing long outdoor paths.

.1. Method overview

The topological map that the method uses is a graph where nodes

epresent places in the environment and edges represent the naviga-

ion methods that can be used to move between these places. While

he nodes are associated with azimuths indicating directions of the

utgoing edges, the edges contain information that allows the robot

o traverse between the individual places. In other words, an edge

f the hybrid topological map represents an action that the robot

hould take during its length in different parts of the route: i.e. either

he path-following or the feature-based navigation.

The environment map is created during a training phase where the

ser builds a topological map by driving a semi-autonomously moving

obot through the environment. During the training, the robot either

oves forwards while creating an image-feature based map or it

ollows a pathway of the environment. Whenever the user terminates

he current behavior, the robot records the length of the edge and

reates a topological node. Then, the user can manually set the robot

rientation and start path following or feature mapping again. It is

mportant to note that if the length of the path-following edge is

nown (e.g. from an overhead map), there is no need to traverse the

dge during the learning phase (see Fig. 1).

In the autonomous navigation or “replay” phase, the robot tra-

erses a sequence of edges by either one of the two movement prim-

tives. Note that neither or the methods performs localization of the

obot. Both methods simply keep the robot close to the trained paths

hile using odometric reading to decide whether the particular edge

as been traversed or not. In Section 5 we will show that despite of

implicity of the approach, the robot position error does not diverge
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Fig. 1. Schematic of an example map of the hybrid method for a given indoor/outdoor scenario. Lines marked in blue consist of the portions of the map which are traversed using

the path-following method, while lines marked in red, portions which are traversed using the feature-based approach. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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In the next sections we will describe each navigation movement

primitive: feature-based for open areas (indoor or outdoor) where

there is not bounded path to go through, or cross intersection of two

or more paths, and image segmentation based method conceived to

follow structured or semi-structured paths.

3. Feature-based visual navigation

The feature-based navigation method used as a motion primitive

of the proposed approach is based on Krajník et al. [7]. This method

uses the map-and-replay technique which is described in this section.

This method allows a robot to follow a given path by performing

an initial learning phase where features extracted from the camera

images are stored. In a second replay phase, the robot autonomously

navigates through the learned path while correcting its heading by

comparing currently seen and previously stored features.

3.1. Image features

Since image features are considered as visual landmarks, the fea-

ture detector and descriptor algorithms are a critical component of

the navigation method. Image features must provide enough infor-

mation to steer the robot in a correct direction. Furthermore, they

should be robust to real world conditions, i.e. changing illumination,

scale, viewpoint and partial occlusions and of course its performance

must allow real-time operation. In the original version of the method,

Krajník et al. used SURF algorithm proposed by Bay et al. [17] to iden-
ify visual landmarks in the image. The SURF method is reported to

erform better than most SIFT [18] implementations in terms of speed

nd robustness to viewpoint and illumination change.

For this work, further evaluation of a variety of extractor and

escriptor algorithms, in the context of visual navigation, was per-

ormed. The goal of these off-line experiments was to determine

hich algorithm combination is the best choice for visual navigation

n terms of performance, robustness and repeatability [19]. As a result

f this evaluation, we conclude that the combination of STAR based on

enSurE (Center Surround Extremas) algorithm [20] to detect image

eatures and BRIEF (binary robust independent elementary features)

lgorithm [21] to build the descriptor of the feature outperforms the

ther image feature extraction algorithms. The STAR extractor gives

etter results to detect landmarks than SURF, because keypoints ex-

racted with STAR are more salient and thus, also more stable than

eypoints extracted with SURF. The BRIEF descriptor uses a simpler

oding scheme to describe a feature, this reduces storage require-

ents and increases matching speed. The SURF use 64 (or 128 in the

xtended version) double-precision floating-point values to describe

keypoint, this results in 512 bytes (or 1024) of data for each de-

criptor. In contrast, BRIEF uses a string of bits that can be packed in

2 bytes. Taking into account the high number of features present in

he map, this can amount to hundreds of megabytes which are saved

n large-scale maps. Furthermore, in terms of speed, instead of using

he Euclidean distance to compare descriptors as it is done with SURF,

RIEF descriptors can be compared using Hamming distance, which

an be implemented extremely fast using SSE instructions.
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.2. Learning phase

In the initial learning phase, the robot is manually guided through

he environment while the map is built. The operator can either let the

obot go forward or stop it and turn it in a desired direction. A map can

herefore be built, which will have the shape of a series of segments of

ertain length as computed by the robots odometry. During forward

ovement, the robot tracks features extracted from the robot’s cam-

ra images. For each feature, its position in the image is saved along

ts descriptor. Also, initial and final distances (as measured by the

obot’s odometry) along the segment where the feature was first and

ast seen are also saved. Tracking is performed by extracting features

or the present frame and comparing these to others that were con-

inuously seen in previous frames. While features remain in the set of

racked landmarks, their information can be updated. When features

re not seen anymore, they are added to the map and removed from

his set. Matching is performed by comparing descriptors.

The procedure which creates a map of one segment is as follows

n the listing 1. Each landmark has an associated descriptor ldesc, pixel

osition lpos0
, lpos1

and robot relative distance ld0
, ld1

, for when the

andmark was first and last seen, respectively.

Algorithm 1: Learning Phase

Input: ϕ: initial robot orientation

Output: L: landmarks learned for the current segment, s:

segment length, ϕ0: segment orientation

ϕ0 ← ϕ read robot orientation from gyro or compass

L ← ∅ /* clear the learned landmark set */

T ← ∅ /* clear the tracked landmark set */

repeat
F ←features extracted from the current camera image

foreach l ∈ T do
f ← find_match(l,F)

if no match then

T ← T − { l } /* stop tracking */
L ← L ∪ { l } /* add to segment */

else
F ← F − { f }
l ← (ldesc, lpos0

, fpos, ld0
, d) /* update image

coordinates & robot position */

foreach f ∈ F do

T ← T ∪ { (fdesc, fpos0
, fpos0

, d, d) } /* start
tracking new landmark */

until operator terminates learning mode

L ← L ∪ T /* save tracked landmarks */
s ← d /* remember the segment’s length */

The map obtained by this approach is thus composed of a series

f straight segments, each described by its length s, azimuth φ0 and a

et of detected landmarks L. A landmark l ∈ L is described by a tuple

e, k, u, v, f, g), where e is its BRIEF descriptor and k indicates the

umber of images, in which the feature was detected. Vectors u and v

enote positions of the feature in the captured image at the moment

f its first and last detection and f and g are distances of the robot

rom the segment start at these moments.

.3. Autonomous navigation phase

In order to navigate the environment using this method, the robot

s initially placed near the starting position of a known segment. Then,

he robot moves forward at constant speed while correcting its head-

ng. This is performed by retrieving the set of relevant landmarks
rom the map at each moment and to estimate their position in the

urrent camera image. These landmarks are paired with the currently

etected ones and the differences between the estimated and real po-

itions are calculated. As these differences in image coordinates are

elated to a displacement of the robot in the world, it is possible to

ctively minimize these by moving the robot accordingly, and thus

he previously learnt path is replayed.

Algorithm 2: Navigation Phase

Input: L: landmarks of the current segment s: current

segment length

Output: ω: angular robot speed v: forward robot speed

v ← v0 /* start moving forwards */
while d < s do

H ← ∅ /* pixel-position differences */
T ← ∅ /* tracked landmarks */
foreach l ∈ L do

if ld0
< d < ld1

then

T ← T ∪ { l } /* get expected
landmarks according to d */

F ←features extracted from the current camera image

while T not empty do
f ← find_match(l,F)

if matched then

/* compare feature position to
estimated current landmark
position by interpolation */

h ← fpos −
(
(lpos1

− lpos0
)

d − ld0
ld1

− ld0

+ lpos0

)

H ← H ∪ { h }
T ← T − { l }

ω ← γ mode(H)

v,ω ← 0 /* segment completed, stop moving */

More formally, the replay phase is as follows. Each time a new

mage is captured, the robot updates the estimated traveled distance

from the start of the segment and builds the set T by retrieving

andmarks in L that were visible at distance d during learning. Then,

eatures are extracted from the current camera image and put in the

et F. A pairing between the sets F and T is established as in the learn-

ng phase. After establishing these correspondences, for each pair of

atching features their image position is compared. The expected

mage position of landmarks in T is obtained by linearly interpolating

ccording to d, since only initial and last image positions of landmarks

re stored during mapping to reduce map size. By taking the horizon-

al difference in image positions a heading correction for the robot

an be established. To obtain a single correction value, the most likely

orizontal position needs to be obtained since the matching process

ay produce outliers. Thus, this single deviation value is obtained

y sampling all horizontal differences in a histogram and taking its

ode.

While the robot moves forward at constant speed, this heading

orrection is performed for each frame until d equals the segment

ength stored in the map. The listing 2 presents the algorithm used to

raverse or ‘replay’ one segment.

. Segmentation-based path-following

The path-following method used as motion primitive of the pro-

osed approach is based on a previous work by De Cristóforis et al.

15]. Here, a mobile robot is autonomously steered in order to remain

nside a semi-structured path by means of image processing alone.
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(a) Input image (b) Cropped &
blured

(c) Segment Map

(d) Hue per pixel (e) Mean hue per
super-pixel

(f) Value per pixel

(g) Mean value per
super-pixel

(h) Saturation per
pixel

(i) Mean saturation
per super-pixel

(j) Super-pixel clas-
sification as binary
mask

(k) Filtered binary
mask

(l) Path contour

Fig. 2. Pipeline description: (a) input image as acquired from the camera, (b) cropped

image below automatically detected horizon, (c) segment map. For each segment,

mean and covariance are computed: (e), (i) and (g) show segment hue, saturation

and value means respectively. (d), (h) and (f) show pixel hue, saturation and value

for reference. (j) binary mask obtained from classification using ground models from

ROI. (k) Morphological opening filter is applied in order to ‘close’ small gaps in the

binary mask. (l) Path contour extracted from processed binary mask and middle points

computed, on top-left linear and angular speeds values obtained by control law.
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The method works by first dividing the image into regions or seg-

ments of similar appearance and then classifying these as belonging

to traversable or non-traversable areas. It does not require a learning

phase since it uses the area immediately in front of the robot in order

to obtain a sample of traversable terrain. A Gaussian-mixture model

is used to describe this sample (using the Hue, Saturation and Value

components) and compare to the rest of the regions in the image.

After classification, the most likely group of interconnected image

segments is used to obtain a contour of traversable path. With this

contour a simple control law which infers the path middle line and

steers the robot to follow it is used.

Since the method only requires the area of the image below the

horizon level (i.e. the ground) to steer the robot, an initial horizon

detection method can be used to infer this area and restrict process-

ing to the meaningful portion of the image. Fig. 2 shows the image

processing pipeline.

4.1. Image segmentation

In outdoor semi-structured or unstructured environments, the

traversable area is often cluttered by small objects with a color of the

forbidden area, for example grass, tree leaves, water or even snow

in the middle of the road. In this case, most classification methods

working at a pixel level, like the one proposed by Dahlkamp et al.

[16], would perform worse than methods which first segment the

image to several areas with similar texture or color. Thus, the initial

step in the path-detection process is to segment the image into a set of

super-pixels. After the image is cropped to contain the region below
he horizon (either automatically or manually), the result is initially

ltered to reduce noise (using a median-blur, which preserves edge

ontrast) and then segmented. The segmentation algorithm used is

he graph-based approach proposed by Felzenszwalb and Hutten-

ocher [22]. The algorithm first constructs a fully connected graph

here each node corresponds to a pixel in the image. Pixel intensities

etween neighbors are analyzed and edges are broken whenever a

hreshold is exceeded. The resulting unconnected sub-graphs define

he segments (or super-pixels).

.2. Classification

To achieve a robust classification of the segments, a probabilistic

pproach is used, based on Dahlkamp et al. [16]. This step determines

f a population sample (a segment), modeled by a Gaussian probability

istribution N (μ,�), with mean vector μ and covariance matrix �,

epresents an instance of a more general model of the ‘navigable

ath’ class or not. This navigable path class is represented in turn

y a Mixture-of-Gaussians (MoG) model. The steps involved in the

lassification task are as follows:

. Segment model computation: each segment is modeled by its

mean μ and covariance � of HSV color values.

. Navigable class computation: a rectangular ROI (region of interest)

in the lower part of the image is used as a reference of naviga-

ble path (see Fig. 2). All models contained in this ROI are merged

by similarity (using Mahalanobis distance). The resulting models

which cover the ROI area by more than a defined percentage are

used as references for navigable regions in the image.

. Classification of all segments: All segments in the image are com-

pared to the reference models for navigable path using the Maha-

lanobis distance. A binary mask for all pixels is created indicating

the membership to this class.

. Contour extraction: the binary mask is post-processed by a mor-

phological opening operation to reduce artifacts and from all re-

gions classified as navigable path, the area intersecting the ROI

region is chosen. The contour of this region is computed.

.3. Motion control

The goal of the motion control is to correct the heading of the robot

o keep it in the middle of the road. From the previously determined

ontour, a path center trajectory is estimated in order to guide the

obot to the center of the detected path and maintain it away from

ath edges. First, by going row-by-row in the image, the middle point

or the current row is obtained from the leftmost and rightmost pixel’s

orizontal positions of the path contour. The list of middle points is

hen used to compute angular and linear speeds with a simple yet

ffective control-law as follows. From the list of n horizontal values

i of the ith middle point of the detected path region, angular speed

and forward speed v are computed as follows:

= α
n∑
i

(
xi − w

2

)
, v = βn − |ω| (1)

here w is the width of the image and α and β are constants specific

o the robot’s speed controllers.

The effects of this control law are such that the robot will turn in

he direction where there is the highest deviation, in average, from

iddle points with respect to a vertical line passing through the image

enter. This line can be assumed to be the position of the camera,

hich is mounted centered on the robot. Therefore, whenever a turn

n the path or an obstacle is present, the robot will turn to remain

nside the path and avoid the obstacle. The linear speed of the robot is

educed accordingly to the angular speed determined by the previous

omputation. This has the effect of slowing down the robot whenever

t has to take a sharp turn.
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. Robot position error analysis

In this section we show that despite the fact that the robot lo-

alization is based on odometry, the robot position error does not

iverge over time due to the heading corrections caused by the two

ovement primitives.

Our analysis assumes that a mobile robot moves through a se-

uence of n waypoints by using reactive navigation algorithms (or

otion primitives) that steer the robot towards the waypoint’s con-

ecting lines. We describe robot position at each waypoint in the

aypoint’s coordinate frame and show that the robot’s relative posi-

ion to a particular waypoint can be calculated by a recursive formula

k+1 = Mkxk, where the matrix Mk eigenvalues are 1 and mk. First,

e show that mk is lower than 1 because of the heading corrections

ntroduced by the motion primitive used to navigate between kth and

k + 1)th waypoint. Finally, we show that if all the path waypoints do

ot lie on a straight line, M = ∏
k = 0n−1Mk dominant eigenvalue is

ower than one, meaning that the robot position error is reduced as it

ravels the entire path.

.1. Robot movement model

Let us assume that the robot moves on a plane and its position and

eading is x, y, ϕ respectively. Assume that the edge to be traversed

tarts at coordinate origin and leads in the direction of the x-axis.

The path following method presented in Section 4.1 calculates

he robot’s steering speed ω directly from image coordinates of the

egmented path center. These coordinates are affected by both robot

eading φ and lateral displacement y. Larger robot displacement and

arger heading deviation cause larger values of the steering speed, i.e.

∼ −c0y − c1ϕ. (2)

iven that the robot’s speed v is much lower compared to the maximal

otation speed ω, the robot can change its heading much faster than

ts horizontal displacement y. Thus, a robot steered by the method

resented in Section 4 will quickly stabilize its heading and reach a

tate when its rotation speed ω will be close to zero. This allows to

ewrite Eq. (2) to

≈ −c0y − c1ϕ. (3)

hus, heading ϕ of a robot following the path can be expressed as

≈ −k0y, (4)

here k0 is a positive constant.

The case of the feature-based method is similar. If the robot is

isplaced in a lateral direction from the path, i.e. in the direction of

he y-axis, the perceived features will not be visible at the expected

ositions, but will be shifted to the right for y > 0 and to the left y < 0.

Since the feature-based method steers the robot in a direction that

inimizes the difference (in horizontal coordinates) of the expected

nd detected features, the robot heading will be stabilized at a value

hat is proportional to its lateral displacement. In other words, the

obot heading ϕ satisfies a similar constrain as in the previous case:

≈ −k1y, (5)

here k1 is a positive constant.

Thus, both of the motion primitives of the hybrid method adjust

he robot heading ϕ proportionally to its lateral displacement from

he path, i.e. ϕ ≈ −ky, where k > 0. Both methods move the robot

long the edge until the robots odometric counter reports that the

istance travelled exceeded the length of the edge stored in the map.

ssuming that the robot heading ϕ is small, we can state that

dy

dx
= ϕ = −ky. (6)

et the initial position of the robot be (ax, ay), where the values of

ax, ay) are significantly smaller than the segment length. Solving this
ifferential equation with boundary conditions ay = f (ax) allows us

o compute the robot position:

= aye−kx. (7)

onsidering a segment of length s, we can calculate the robot position

bx, by) after it traverses the entire segment as:

bx = ax + s

by = aye−ks.
(8)

q. (8) would hold for an error-less odometry and noiseless camera.

onsidering the camera and odometry noise, Eq. (8) will be rewritten

o

bx

by

)
=

(
1 0

0 e−sk

) (
ax

ay

)
+

(
sυ
ξ

)
, (9)

here υ and ξ are normally distributed random variables, μ(υ) = 1,

(υ) = ε, μ(ξ) = 0 and σ(ξ) = τ . A compact form of (9) is

= Ma + s. (10)

or a segment with an arbitrary azimuth, one can rotate the coordi-

ate system by the rotation matrix R, apply (10) and rotate the result

ack by RT. Thus, Eq. (10) would become

= RT
(
MRa + s

) = RTMRa + RTs. (11)

sing (11), the robot position b at the end of the segment can be

omputed from its starting position a. Eq. (11) allows to calculate

obot position as it traverses along the intended path.

.2. Position error

Let the robot initial position a be a random variable drawn from a

wo-dimensional normal distribution with the mean â. Since Eq. (11)

as only linear and absolute terms, the final robot position b will

ave a normal distribution as well. Let a = â+ã, where ã is a random

ormal variable with zero mean. Assuming the same notation for b

nd s, Eq. (11) can be rewritten as

˜ = RTMR(â + ã)+ RT(ŝ + s̃)− b̂. (12)

ubstituting RTMRâ + RTŝ for b̂, Eq. (12) becomes

˜ = RTMRã + RTs̃, (13)

here ã, b̃, s̃ are Gaussian random variables with zero mean. The ã

nd b̃ represent the robot position error at the start and end of the

raversed segment.

.3. Traversing multiple segments

Let the robot path is a closed chain of n linear segments denoted by

umbers from 0 to n − 1. Let a segment i be oriented in the direction

i and its length be si. Let the robot positions at the start and end

f the ith segment are ai and bi respectively. Since the segments are

oined, bi = ai+1 and Eq. (13) for the ith traveled segment is

˜i+1 = Niãi + RT
i s̃i, (14)

here Ni = RT
i

MiRi. Thus, the robot position after traversing the entire

ath consisting of the n segments will be

˜n = N̆ã0 + t̆, (15)



124 P. De Cristóforis et al. / Pattern Recognition Letters 53 (2015) 118–128

f

p

i

r

p

c

b

e

f

t

b

f

t

6

t

o

m

e

t

o

s

m

r

6

i

s

T

a

p

p

r

a

a

w

t

i

c

E

p

o

t

W

o

t

t

c

p

p

b

t

t

a

o

a

where

N̆ =
0∏

j=n−1

Nj and t̆ =
n−1∑
i=0

⎛
⎝ n−1∏

j=i+1

Nj

⎞
⎠ RT

i s̃i. (16)

If the robot traverses the entire path k-times, its position can be cal-

culated in a recursive way by

ã(k+1)n = N̆ãkn + t̆. (17)

Since the mean of every s̃i is equal to zero and s̃i have normal distri-

bution, t̆, that is a linear combination of s̃i, has a normal distribution

with zero mean as well. Therefore, Eq. (17) describes a linear discrete

stochastic system, where the vector t̆ represents a disturbance vec-

tor. If the system characterized by (17) is stable, then the position

deviation of the robot from the intended path ãi does not diverge for

k → +∞. The system is stable if all eigenvalues of N̆ lie within a unit

circle.

As every Ni equals to RT
i
MiRi, its eigenvalues lie on the diagonal of

Mi and its eigenvectors constitute columns of Ri. Therefore, each ma-

trix Ni is positive-definite and symmetric. Since the dominant eigen-

value of every Ni equals to one, eigenvalues of N̆ are smaller or equal

to one. Since the dominant eigenvalue of N̆ is equal to one if and only

if the dominant eigenvalues of products Ni+1Ni are equal 1 for all i.

However, dominant eigenvalue of a product Ni+1Ni equals 1 only if

the dominant eigenvectors of both Ni and Ni+1 are linearly depen-

dent, which corresponds to collinearity of ith and (i + 1)th segment.

Thus, a dominant eigenvalue n̆ of the matrix N̆ equals 1 if and only if

all path segments are collinear, i.e. the entire path is just a straight

line. For any other case, the spectral radius of N̆ is lower than one,

meaning that the system described by (17) is stable. This means that

if the robot travels the trajectory repeatably, its position error ãkn

does not diverge.

6. Experimental results

The proposed hybrid vision-based navigation system was imple-

mented in C/C++ within the ROS (Robot Operating System) framework

as a set of separate ROS modules1. The performance of the navigation

system has been evaluated in an indoor/outdoor environment. The

experiments were performed outside and inside of the Pabellón 1

building, Ciudad Universitaria, Buenos Aires, Argentina. Two sets of

experiments were performed with two different robots. Two robotic

platforms were used for experiments: a small differential caterpillar-

tracked robot called ExaBot [23] and a four-wheeled P3-AT from Mo-

bileRobots. Both platforms were equipped with a single off-the-shelf

camera and a Core i5 laptop as the sensing and processing elements,

respectively.

Additionally, the motion model correctness was also demon-

strated in practice, by teaching and repeating a single straight seg-

ment in an outdoor scenario, using both methods. Finally, the com-

putational efficiency of the method was measured.

6.1. Motion model correctness

The first scenario was aimed at verification of the assumptions

given in Section 5.1. In particular, we wanted to calculate if the robot

motion model established by Eq. (7) conforms to real robot motion

along one straight segment. To verify the motion model, we have

taught the robot to traverse a 5.6 m long straight path. Then, we

executed the autonomous navigation system in order to repeat the

path 5 times, with an initial lateral displacement of about 0.5 m from

the original starting point. The robot motion was tracked using an

external localization system [24]. We used both segmentation- and
1 We will plan to release an open version of the software if the paper is accepted.

r

f

eature-based methods for this test. The recovered trajectories, com-

ared with an expected exponential shape given by (7), are presented

n Fig. 3, where the stability of the system is appreciated. The trajecto-

ies described by both methods correspond to the exponential model

resented in Eq. (7).

As can be seen, both navigation methods converge. However, it

an be easily noted that in this outdoor scenario, the segmentation-

ased path following method converges much faster and with less

rror. Since the scene is comprised mostly of distant elements, the

eature-based method aligns its view and converges much slower. On

he other hand, on indoor scenarios, the convergence of the feature-

ased method is much faster. Thus, it makes much more sense to use a

aster converging method such as path-following when the robot has

o navigate outdoors through a structured or semi-structured path.

.2. Algorithm computational efficiency

During the aforementioned experiment, we have also measured

he real-time performance of both navigation algorithms. Typically,

ne cycle of the feature-based navigation algorithm takes approxi-

ately 30 ms, out of which one half is spent with the image features

xtraction and the other with the frame-to-map matching. Segmen-

ation of one image into superpixels typically takes 150 ms of a total

f 215 ms that takes the whole algorithm. Thus, the feature- and

egmentation-based algorithms issue about 30 and 4 steering com-

ands per second respectively, which allows to quickly stabilize the

obot at the heading desired.

.3. Large-scale experiments

The purpose of the large-scale experiments was to test the robot

n realistic outdoor conditions. However, it was not technically pos-

ible to cover the entire operation area by the localization system.

herefore, the algorithm precision has been assessed in the same way

s Chen and Birchfield [8] and Krajník et al. [7], i.e. the relative robot

osition has been measured each time the robot traversed an entire

ath.

In both cases, a closed path was first taught during a tele-operated

un, traversing an open area around the entrance of the building and

square path inside the building hall. On the outdoor portion, when

path was available, the path-detection method was used. Other-

ise, the feature-based navigation method was selected. During this

raining phase, a hybrid map was built, which was later used dur-

ng autonomous navigation. For the P3-AT, the outdoor portion was

onsiderably longer, of a total of 150 m (see Fig. 4), while for the

xaBot, the path length was of 68 m. Two sets of experiments were

erformed with the P3-AT on different days using different mappings

f the environment.

In order to test the robustness of the approach, a series of au-

onomous replays of the previously taught path were performed.

hile this type of navigation has been theoretically proved to reduce

dometric errors by means of processing visual information, during

he experiments the aim was to test this aspect in practice. To this end,

he position of the robot at the end of each replay was measured and

ompared to the ending position. Furthermore, in order to better ap-

reciate the previous error reduction effect, during the experiments

erformed with the ExaBot, the robot was laterally displaced by 0.6 m

efore the first repetition while still remaining inside the bounds of

he path. This was possible due to the reduced size of the ExaBot. On

he other hand, due to its larger size, the P3-AT was only displaced

bout 0.3 m. However, given such a long path, the expected errors of

dometry alone (generally around of 10%) would be higher than this

mount and what is of importance is that after several repetitions the

obot always reaches the expected position without significant error.

For the first set of experiments with the ExaBot, the positions dif-

erences were measured by marking the final robot positions on the
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(a)

(b)
Fig. 3. Robot trajectory along a straight segment path. (a) shows the results using the feature-based method and (b) using the path following method. Five replays were performed

for each case. The data points of the recorded trajectories are fitted using the equation y = aye−kx to verify the motion model used in the navigation method.
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Table 1

Position errors of the indoor/outdoor experiment with the hybrid method, for

each robot. Errors were measured after each repetition with respect to the

ending positions reached after training.

P3-AT ExaBot

Replay Abs. err. (m) Rel. err. (% ) Abs. err. (m) Rel. err. (% )

1 0.40 0.09 0.27 0.06 0.12 0.12

2 0.58 0.19 0.39 0.12 0.07 0.10

3 0.90 0.20 0.60 0.13 0.03 0.05

4 0.86 0.21 0.57 0.13 − −
5 0.80 0.25 0.53 0.16 − −
Avg. 0.71 0.19 0.47 0.12 0.07 0.09

l

i

t

oor and measuring by hand. In contrast, for the second set of ex-

eriments performed with the P3-AT, an external visual localization

ystem, WhyCon [24], was used as ground-truth data of the robot po-

ition. The localization system allows obtaining the pose of the robot

ithin its 2D plane of motion, with respect to a user set coordinate

ystem, by detecting a circular pattern attached to the robot by means

f an external fixed camera. This localization system has been shown

o have around 1% relative error (in relation to the measurement area).

The results for both sets can be seen in Table 1, corresponding to

ve repeats for the case of the P3-AT and three for the ExaBot (due

o limited autonomy). As can be seen, the second set of repeats with

he P3-AT (second column) gave better results than the first one (first

olumn). This may be because in the first case the learning phase

as made in one day and the autonomous navigation phase in an-

ther, while the weather changed from cloudy/light rain to partly

loudy/sunny, affecting the learned map of the environment. In the

econd set of repeats with the P3-AT the whole experiment (both
 r
earning and replay phase) was done in the same day. In total, us-

ng the presented hybrid method, the P3-AT robot was able to au-

onomously navigate 1.5 km. Example images corresponding to the

obot views during navigation can be seen in Fig. 5.
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(a) (b) (c)

(d)

(e) (f) (g)
Fig. 4. Images of the experiments and of the path traversed by the robot around and inside the Pabellón 1 building, Ciudad Universitaria, Buenos Aires, Argentina. (a), (b) and

(c) show the autonomous navigation phase with the ExaBot, (e), (f) and (g) with the Pioneer 3P-AT, and (d) shows the environment where the experiments took place and the

traversed path, taken from Google Maps.

Table 2

Comparison of the method’s accuracy and repeatability to other works.

Our method Other methods

P3-AT Krajnik Chen

Accuracy (m) 0.19 0.26 0.66

Repeatability (m) 0.08 0.14 1.47

Path length (m) 150 1040 40

[

t

m

i

b

6.4. Performance comparison

To compare the algorithm precision with other teach-and-repeat

systems, we have decided to use accuracy εacc and the repeatability

εrep measures as introduced in Chen and Birchfield [8]. The εacc and

εrep are computed as the RMS of Euclidean distance or a standard

deviation of the robot’s final positions from the path start by equations

εacc =
√

1
n

∑n
i=1 ‖xi − xf‖2 εrep =

√
1
n

∑n
i=1 ‖xi − μ‖2

, (18)

where xi is the robot position after completing the ith loop, xf the

final position after training and μ = ∑n
i=1 ci/n.

Table 2 compares repeatability and accuracy of the our results

to the ones presented in Krajník et al. [7] and Chen and Birchfield
8]. For this analysis the second experiment with the P3-AT was

aken.

This summary indicates that the navigation accuracy of our

ethod is comparable with the closely related methods presented

n articles [7,8], showing better results for both accuracy and repeata-

ility analysis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 5. Screenshots extracted from the ExaBot robot: (a), (b) and (i) during the segmentation-based navigation and (c), (d), (e), (f), (g) and (h) during the landmark-based navigation.
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. Conclusion

In this paper we propose a hybrid visual navigation system for

obile robots in indoor/outdoor environments. The method enables

o use both segmentation-based and feature-based navigation as el-

mentary movement primitives for the entire system. A topological

ap of the environment is defined that can be thought as a graph,

here the edges are navigable paths and the nodes are open areas. As

e already saw segmentation-based navigation fits very well to path

ollowing (edges) and landmark-based navigation is suitable for open

reas (nodes).

The presented method is robust and easy to implement and does

ot require sensor calibration or structured environment, and its

omputational complexity is independent of the environment size.

e also present a convergence analysis to prove both theoretically

nd empirically that despite the robot localization within a seg-

ent is based on pure odometry, if the robot traverses a closed

ath repeatedly, its position error does not diverge over time due

o the heading corrections caused by the properties of the two

ovement primitives. The aforementioned properties of the method

llow even low-cost robots equipped only with a single, off-the-

helf camera to effectively act in large in mixed indoor/outdoor

nvironments.
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