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Abstract— Exploring efficiently an unknown environment
with several autonomous agents is a challenging task. In this
work we propose an multi-agent Active SLAM method that
is able to evaluate a long planning horizon of actions and
perform exploration while maintaining estimation uncertainties
bounded. Candidate actions are generated using a variant of the
Rapidly exploring Random Tree approach (RRT*) followed by a
joint entropy minimization to select a path. Entropy estimation
is performed in two stages, a short horizon evaluation is carried
using exhaustive filter updates while entropy in long horizons is
approximated considering reductions on predicted loop closures
between robot trajectories. We pursue a fully decentralized ex-
ploration approach to cope with typical uncertainties in multi-
agent coordination. We performed simulations for decentralized
exploration planning, which is both dynamically adapting to
new situations as well as concerning long horizon plans.

I. INTRODUCTION

Nowadays robots are taking over more and more au-
tonomous tasks, and for this reason, they need to be able
to navigate through unknown environments safely. Hence
generating a representation of the environment becomes
crucial. This includes the necessity of exploring new areas as
well as improving the map quality of already visited places.
Coordinating multiple agents in the same environment poses
additional control challenges but its inherently parallel sen-
sory and computational facilities allows for faster exploration
than a single agent.

The autonomous exploration of an unknown environment
can be roughly defined as an iterative procedure that consists
in the selection of a new goal to explore and navigation
towards this goal, which ends by fulfilling a defined condition
(mission objective). Meanwhile, the usage of resources (e.g.,
the exploration time, the length of the trajectory) is opti-
mized. The exploration strategy determines the next target
pose in each exploration iteration concerning the current
robot pose, the current knowledge about the environment
(i.e., current map), and a selected optimization criterion.

Exploration methods have been developed for more than
four decades now. For the longest time, the main focus
was put on coverage, hence, visiting the largest part of the
environment in the shortest amount of time [1]. A central
question of exploration is where to place the robot in order
to obtain new information about the environment. One of
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the pioneering work on this was the frontier-based approach
proposed by Yamauchi [2], where the robot is guided to
the boundary between mapped and unknown environment.
Typically, several frontiers exist in a given map, which
allows a simple extension of this approach to multi-robot
exploration [3]. These methods do however only optimize
coverage of the map, leaving the resulting quality out of
focus.

Active Simultaneous Localization and Mapping (Active
SLAM) covers the problem of choosing control actions
that allows exploration while improving map quality and
localization performance. Hence Active SLAM needs to
anticipate the changes that will occur in the map regarding
possible future sensor readings and observations. Using the
notion of entropy, information-gain exploration methods have
been proposed for cooperative multi-robot systems [4]. Most
Active SLAM researches consist of defining a metric to
be used as a measure of information gain and optimize
this measure to find control policies that maximize the
information gain [5], and thus, reducing uncertainties. One
significant difference between existing approaches lies in the
control actions evaluation horizon and the accuracy for this
anticipations.

In this work we propose a decentralized multi-agent Active
SLAM approach that is able to evaluate a long planning hori-
zon of actions and perform exploration while minimizing a
path and map entropy objective function. Main contributions
of this research can be summarized as:
• A decentralized planning arbitration is employed pro-

moting paths that result in better exploration coverage.
• Method generates complex inter-robots loops that main-

tain estimated uncertainties bounded.
• Short horizon entropy evaluation is carried using a

complexity bounded information filter.
• An entropy reduction on predicted inter-robot loop

closures is proposed in the long horizon evaluation.

II. RELATED WORK

Atanasov et al. [6] propose a decentralized solution for
the multi-sensor active information acquisition problem and
show how it can be applied in the context of multi-robot
Active SLAM. They build their planning method upon a
graph-base SLAM [7], [8] estimation layer which exploits
the information matrix sparsity of the SLAM problem.
Following this sparse representation, they employ a Square-
Root Information Filter (SRIF) [9] for future control actions
evaluation where filter updates compute the evolution of pose
and map uncertainties in the information form. They claim



to allow long horizon planning with reported experiments
within a 12-step planning horizon. Exhaustive filter updates
represent a substantial computing cost preventing them from
evaluating a higher number of possible action combinations.
Instead, the method uses a state machine and attractors [10]
to encode long-term information-gain promises in the filter
and, in this way, obtain the desired explorative behavior.

An essential element of optimal action search in a highly
nonlinear domain as SLAM is action space discretization. It
is necessary to create a finite set of candidates to search
through. Atanasov et al. obtain their path candidates by
combining a fixed number of possible control actions for
every step of the planning horizon. This is one possibility of
generating paths, which is aimed towards covering most of
the action space in the close surrounding of the agent. How-
ever, there are better options of generating path candidates for
long-distance planning. One of the well studied approaches
is the RRT* algorithm [11]. It can quickly produce a tree
of path options, that spread over the whole map, while
iteratively optimizing a certain trait like distance travelled.

A lot of work in RRT related algorithms has been put
into changing its inherent Voronoi bias, which favors a fast
map coverage towards some goal oriented bias. E.g., in
[12] there is a higher number of random nodes sampled
inside a defined region between agent and goal to ensure
short distance solutions. Yershova et al. [13] sample new
tree nodes depending on the intersection of obstacles with
the Voronoi graph to pass difficult obstacle constellations.
These methods allow biasing the tree growth to produce
more feasible solutions in shorter time. We will use this
mechanism to produce path candidates that already support
the exploration necessities.

Vallvé and Andrade-Cetto [14] explored the idea of using
paths built by an RRT* [15] algorithm as candidates for
single-robot Active SLAM instead of generating a path out
of a fixed set of candidate actions. Thereby they exploit
the favorable properties of RRT* like the Voronoi growing
bias towards a fast exploration of the state space, ease of
collision handling and node rewiring according to a given
cost function. They introduce a joint approximation of path
and map entropy as a way to evaluate RRT* nodes and
maximize information gain by selecting actions paths that
minimize entropy change divided by path distance. Entropy
approximation relates three main behaviors: (i) An open loop
path entropy estimation that models entropy growth over
distance through noise propagation of the process model (ii)
A closed loop path entropy estimation that introduces an
entropy reduction when a loop closure is predicted between
a new node configuration state and an already visited area
(iii) An entropy exploration reward based on new explored
space along the path. In all cases the method represents a
quick entropy approximation for each RRT* node evaluated,
allowing to consider a high number of control steps. Vallvé
and Andrade-Cetto compare their approach in simulation
against frontier based exploration and simpler heuristic Ac-
tive SLAM approaches reporting benefits in terms of map
coverage, estimates error and final overall uncertainties.

In this work action candidates are generated using a variant
of RRT* and we use a combination of approaches previously
introduced in [6] and [14] for entropy evaluation. Exploratory
trajectories are generated with complex inter-robot loops
exploiting the multi-agent aspect of the exploration without
the need of artificial attractors. Tree nodes of a path are
divided into two types: (i) short horizon planning nodes
with actions that will have immediate effect and (ii) long
horizon planning nodes with actions that will occur later on
the path. Short horizon nodes will be exhaustively evaluated
using filter updates while long horizon nodes will be evalu-
ated using approximations proposed in [14] with extensions
considering loop closures between different robots. Lastly we
will describe a multi-agent coordinated scheme that allows
decentralized planning arbitration promoting paths that result
in better exploration coverage.

III. DECENTRALIZED MULTI-AGENT EXPLORATION

The planning process is built over a graph-based SLAM
estimation layer that maintains a probabilistic estimate of
robots poses and discovered map landmarks positions. The
problem is solved with a nonlinear least-squares approach
performing iterative linearization and exploiting the inherent
sparsity of the SLAM problem working over the Λ infor-
mation matrix of the system. In this way, the problem is
parametrized as p(x) = N (µ,Σ) where Σ = Λ−1. The
associated linear system is solved using Cholesky factoriza-
tion over the information matrix obtaining Λ = CᵀC where
C is upper triangular and known as the square root of the
information matrix. Along with the sparse set of discovered
landmarks we maintain also a grid map representation.

A. RRT* Tree Growing

Each robot performs an independent control actions search
building his own RRT* tree. To ease the computational
burden, on every iteration of our algorithm (see 1), only
a pre-defined number of new nodes are sampled. We use
a biased sampling to shape the RRT* tree growth towards
regions of interest, while the rewiring minimizes the traveled
distance. Inspired by [6], there are four different sampling
types a) Random, b) Explore, c) Improve Map, d) Improve
Localization, corresponding to sampling in: a) the complete
configuration space, b) only over unexplored regions, c)
around areas with highly uncertain landmarks, and lastly,
d) around areas with well localized landmarks. According to
the current situation, the chances for sampling from the four
types differ. The higher the agent’s localization uncertainty,
the higher is the chance to sample from d). The same applies
to the uncertainty of the worst localized landmark position
and c), as well as to the distance to the closest unexplored
region and b).

A novelty in comparison to [14] approach is that after
every control action the RRT* tree is inspected for feasi-
bility. The RRT* root node is redefined rewiring achievable
branches and deleting those that are no longer valid (as we
use a non-holonomic robot model not all of the old RRT*
branches can be reached from the new position). It is critical



that the trajectory execution is accurately tracked for practical
real-time implementations of RRT*s preventing deviations
from growing too large, which would make a complete re-
initialization of the tree necessary [16].

B. Actions Evaluation

To choose the best path to take, it is necessary to evaluate
the effect of a path on the derived map and resulting
localization uncertainty. As we do not have prior information
of where landmarks lie in the unexplored area, it is only
possible to obtain an estimation of the true effect of a certain
path on the underlying SLAM estimation layer. Every node
of the tree represents a possible future state configuration
and transitions between nodes defines actions. We adopt
a similar notation to the one introduced in [14], where
xi1:t represents the trajectory realized by the robot i after
executing a set of relative motions ui1:t, one grid maps mi

t can
be rendered for each robot based on the sensor measurements
z1:t obtained. We will refer to x1:t, u1:t, z1:t and mt as the
combined trajectories, control actions, sensor measurements
and grids of all robots. Every branch of the RRT tree i
would define a path candidate ait as a sequence of future
control actions uit+1:T , which would result in the sequence of
node’s configuration states xit+1:T . Sensor measurements can
be predicted along this path obtaining zit+1:T and a expected
grid map mi

T can be render.
Following [14], we choose the best action to follow as the

one that minimize the entropy (H) change divided by the
distance traveled

ai
∗

t = argmin
ui
t+1:T

H(xi1:T ,m
i
T |ui1:T , zi1:T )−H(xi1:t,m

i
t|ui1:t, zi1:t)

dist(uit+1:T )
.

(1)
Joint differential entropy will be approximated as proposed

in [17] with

H(x,m|u, z) ≈ H(x|u, z) + α(p(x|u, z))H(m|µ, z) (2)

where α(p(xi|ui, zi)) = det(Σitt)
−1. In this way, H(m|µ, z)

is computed using the mean trajectory estimate µ and models
a way to decrease entropy and introduce an exploration
reward based on the amount of predicted space discovered
by the path. This approximated map entropy is going to be
relevant only when the robot localization is accurate as it
will be weighted by determinant of the last estimated pose
covariance det(Σitt)

−1 as suggested in [14].
Planning horizon T is divided as T = {Tsh, Tlh} where

[t+1 : Tsh] will cover those nodes that are within an defined
area around the current robot pose and [Tsh + 1 : Tlh]
will encapsulate those that are beyond the short-horizon
area. Proposed approximation (2) allow us to effectively
divide evaluation treating path and map entropy estimation
separately. Furthermore we divide path entropy estimation
in two, a short horizon estimation will consider sparse
landmarks of the SLAM estimation layer to produce a more
accurate approximation while a long horizon estimation will
model desirable long term behaviors.

Following a detailed explanation of each entropy esti-
mation term, otherwise stated, we will omit i superscript
referring to each possible robot.

1) Short-Horizon path entropy estimation: In short-
term planning we are most interested in maintaining proper
localization avoiding movements that leads to immediate
counterproductive results. For this reason, each robot defines
a set of variables of interest st = {xt, l1, . . . , ln} where
xt is the latest estimated trajectory pose and l1, . . . , ln are
close range landmarks up to a certain distance threshold. A
sub matrix Λt = [Λ]st is taken using rows and columns
corresponding to variables of interest st. This information
matrix represents conditional probability distribution of said
variable and allows us to work only with a fixed pre-defined
number of variables. Applying Cholesky decomposition we
have Λt = Cᵀ

t Ct and, as described in [6], forward state
configurations are used to predict future sensor readings that
are integrated using a Square-Root Information Filter (SRIF)
[9]. In this way, square-root information matrix progression
is estimated through candidate nodes providing Ck with
k ∈ [t, . . . , Tsh].

This process effectively discards global trajectory infor-
mation relating old poses and landmarks allowing evaluation
of information gain only in local terms relative to the
last estimated pose and nearby landmarks. As the number
of considered variables remains fixed covariances can be
then computed in constant time by inversion of square-root
matrices Σk = C−1k C−ᵀk and pose marginals are used to
approximate required path entropies as

H(x1:k|u1:k, z1:k) ≈ 1

2
ln
(

(2πe)
d
2 det([Σk]x)

)
(3)

being d the dimension of the individual pose vector, d = 3
in our case.

2) Long-Horizon path entropy estimation: In long-term
planning we are most interested in modeling proper rewards
for robot paths that will probably produce loop closures,
either with his own performed trajectory or with that of
any other robot. For this, a candidate robot configuration xik
must fall inside the matching area of an estimated pose xjl
belonging to the realized trajectory of robot j. An efficient
iterative approximation introduced in [14] is extended to
support the multi-robot case. In open loop, path entropy is
averaged over all individual pose marginals

H(x1:k|u1:k, z1:k) ≈k − 1

k
H(x1:k−1|u1:k−1, z1:t−1)

+
1

k
ln
(
(2πe)

n
2 det(Σkk)

) (4)

where k ∈ [Tsh + 1, . . . , Tls] and Σkk is computed by noise
propagation of the motion model.

To evaluate the effect of a predicted loop closure the path
entropy reduction can be calculated using a loop closure
sensor model and a predicted innovation covariance proposed
in [17]. All pose marginal covariances Σnn change to new
values Σ′nn (∀n ∈ [1, k]) if a loop closure is expected in



a path and determinant ratio changes can be establish as
ρh = det(Σ′nn)/det(Σnn). Taking only new covariances
of loop nodes xik and xjl , Σ′kk and Σ′ll the loop closure
information gain can be linearly approximated through the
path. In case that xik and xjl belongs to the trajectory of
the same robot (i = j), a "clean" loop is assumed where
only marginal covariances of nodes enclosed in the loop
will be affected. In case that the loop closure has been
predicted between trajectories of different robots (i 6= j)
the covariance with higher determinant is taken as reference
and the approximation is done considering an improvement
in the whole trajectory of the other robot up to the reference
node.

Being γ = argmaxn∈[k,l] det(Σnn), the loop closure
information gain introduced is linearly approximated as

∆H(xi1:k|ui1:k, zi1:k) ≈


1

k
ln
k−l+1∏
n=1

(
ρl +

ρk − ρl
k − l + 1

n

)
if i = j

1

γ
ln

γ∏
n=1

ργ
n

if i 6= j

(5)
3) Map entropy estimation: We work over the occupancy

grid map mT with predefined cell size s. To each cell there
is an associate classification probability pc which values 0
when the cell is free and 1 if is occupied and, in case that we
do not have information about a cell, pc value is assumed as
0.5. The map entropy can be then calculated as a sum over
all the cells in mT

H(mT |u1:t, z1:t) = −s2
∑
c∈mT

(pc ln pc+(1−pc) ln(1−pc)).

(6)
Note that if all map cells are known and classified, either

free or occupied, total map entropy is 0. When pc = 0.5
each cell increases entropy by a maximum amount λ ' 0.7.

Expected map entropy reduction after moving to a new
state configuration is related with how many cells will change
its classification probability from unknown (pc = 0.5) to 0
or 1. As we want to reward long term trajectories we will
speculate the amount of map grid that will be discover along
a path by counting explorative nodes. A node is declared
as explorative if his frustum is considered to reach a grid
cell that has not been explored before. Furthermore, we
will approximate classification probability change assuming
that new discovered cells in the field of view will be
completely classified as free or occupied. This will introduce
an information gain of λ per predicted discovered cell for
each explorative node. Using this approximation map entropy
information gain is

H(mk|u1:k, z1:k)−H(mt|u1:t, z1:t) ≈ −s2
k∑

n=t+1

dxn
λ (7)

where k ∈ [t+ 1, . . . , T ] and dxn is the number of predicted
newly discovered cells by xn.

Fig. 1: Instances of the multi-agent active SLAM system
simulation. Top image shows an early state with the complete
RRT* tree of a robot. Bottom image shows only currently
selected branches and can be seen that some robots seek for
loop closures, in some cases, with trajectories of a different
robot. Real robots positions are in green, red ellipses shows
estimated covariances, dotted red areas exhibit robot’s field
of view. Landmarks positions are shown as yellow squares
and his estimated covariances are represented with blue
ellipses. RRT* branches are exhibit as connected dots colored
representing entropy evaluation for each node. Blue nodes
represent better joint path-map entropy evaluation.

This approach allows to approximate map entropy reduc-
tion for nodes in unexplored areas predicting the amount
of space that will be explored without considering actual
feasibility of that map innovation. This results in long
predicted paths towards unknown space and the method relies
on the RRT* growing algorithm to check for feasibility and
cut branches that will be occluded by newly discovered
obstacles.

C. Anticipating Other Agent’s Actions

The essential interference between two agents is the re-
sulting map coverage of their paths. The lower the paths
overlap the higher map coverage. There are several problems
in anticipating the exact coverage a path will add to the



map: (i) there is an uncertainty on localization and the agent
may not take exactly the path it planned (ii) density of
landmarks on the planned path may be unknown, hence, the
amount of added information is unknown (iii) planned paths
might be subject to re-planning and hence, won’t be followed
thoroughly.

We need a measure to evaluate the suitability of the path
regarding the resulting coverage, which we then combine
with the path entropy estimation to form the merit of a path
candidate. To take the before mentioned uncertainties into
account, we model path coverage as a probability distribution
of visiting a particular partition of the map at a random time
step along paths. We compute this probability distribution by
assigning all path nodes into a set of bins, which represents
a discretization of the map space. Given this representation,
we can relate two paths by measuring the Kullback-Leibler
divergence between them

xopt = arg max
x

DKL(Y ||X). (8)

where X is the probability distribution resulting from the path
candidate x, while Y is the probability distribution resulting
from the chosen paths of all other agents combined, this gives
us a measure for how likely is that a specific path overlaps
with others or if it will add different information to the map.
This measure, together with the entropy estimation decides
both which agent is allowed to choose a new path candidate
as well as which path will be chosen.

D. Decentralized Coordinated Planning

To reach true decentralization in the exploration process,
we oriented on the idea of Desaraju and How [18] for token
based multi agent coordination. They explore the setting
of multiple agents planning goal oriented paths through an
obstructed environment. A path chosen by one agent might
make the path unfeasible for another one. To handle the
problem that two agents might decide on the same path at
the same time, they allow only one agent to change its path
at a time. This is handled by a token that is passed to the
agent with the highest potential in improving its path. This
potential is called merit. The high number of path candidates
given by the RRT does not allow to calculate the overlap
estimation for every combination of paths. The calculation
only stays feasible if every agent can assume the paths of
others as fixed. Therefore we adopt the idea of only one
agent being allowed to change its path at a time.

The decentralized coordinate planning is summarized in
Algorithm 1

IV. EVALUATION

We implemented our solution over the simulation frame-
work introduced in [6]. The environment initializes as com-
pletely unexplored with predefined initial robots positions
and sparse landmarks positions are randomly created. We
performed experiments of the method without environment
obstacles as that was not the principal scope of the research
and RRT planning algorithms are already proven to effi-
ciently handle this aspect. Fig. 1 shows two moments of

Algorithm 1 Decentralized Coordinated Planning
1) Perform next action of planned path

• Apply control movement
• Measure environment + SLAM Update

2) Update RRT and path candidates (Section III-A)
• Prune now unfeasible branches
• Grow up to 500 nodes of the tree

3) Evaluate path candidates (Section III-B)
• Estimate entropy change for all branches
• Choose the 20 highest performing branches

4) Measure path candidates distribution (Section III-C)
5) Calculate merit [18]
6) Agent with highest merit changes his current path

a simulation. Left side figure exhibits all RRT candidate
branches from one robot with low localization uncertainty
resulting in α(p(x|u, z)) > 1 promoting map exploration
reward towards unexplored space (see equation 2). Right
side figure shows only best candidate paths that minimizes
entropy cost function (equation 1), colors go from red to blue
representing nodes of higher to lower entropy evaluation.
Colors are normalized only with respect to nodes of his own
path, without relating with other robots. It can be seen that
robots with higher localization uncertainty α(p(x|u, z)) < 1
prioritize paths that will produce loop trajectories.

Performance is quantified in Fig. 2. The two first plots
show the Root Mean Square Error (RMSE) of each robot
position and orientation which is shown to not exceed 0.6
meters and 8 degrees respectively. Robots pose entropy is
effectively bounded through the exploration. The aggregated
landmarks entropy exhibits a metrics that averages marginal
entropies of all sparse landmarks, it shows an erratic behavior
with some areas where entropy gets higher but an overall
decrease tendency. This is due to our method not directly
considering landmarks uncertainty as part of the entropy
evaluation but while performing loop trajectories environ-
ment landmarks ultimately improves their estimation. Finally,
the last plot represent the environment coverage that shows a
quick coverage tendency. It worth mentioning that Atanasov
et al. [6] method takes 700 time steps to fully cover the map
while our takes just 400 steps.

V. CONCLUSIONS

We proposed a system to solve Active Pose SLAM prob-
lem, that enables long horizon planning for multiple agents.
Thereby, we allow for effective multi-agent planning by
giving the possibility to anticipate the effects of agent’s ac-
tions. This system maintains the covariance pose estimation
bounded for all the robots and at the same time improves
exploration speed by rewarding long explorative trajectories
with long term loop closures.
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Fig. 2: Results of a simulation using 4 robots, one color for each robot is used for RMSE and entropy plots. ’Average
Landmarks Entropy’ is an aggregated metric averaging marginal entropies of every sparse landmark.
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