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• A fully functioning Stereo SLAM system with loop closure capabilities is presented.
• Efficient covisibility-based map culling strategies are introduced.
• Map optimization and loop closure policies employing shared covisibility information.
• Suitable for low-resource processing units, such as those found on-board of MAVs.
• Detailed description of every concurrent module with proper evaluation of each task.
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a b s t r a c t

Visual SLAM is a computationally expensive task, with a complexity that grows unbounded as the size
of the explored area increases. This becomes an issue when targeting embedded applications such as
on-board localization on Micro Aerial Vehicles (MAVs), where real-time execution is mandatory and
computational resources are a limiting factor.

The herein proposed method introduces a covisibility-graph based map representation which
allows a visual SLAM system to execute with a complexity that does not depend on the size of the map.
The proposed structure allows to efficiently select locally relevant portions of the map to be optimized
in such a way that the results resemble performing a full optimization on the whole trajectory. We
build on S-PTAM (Stereo Parallel Tracking and Mapping), yielding an accurate and robust stereo SLAM
system capable to work in real-time under limited hardware constraints such as those present in
MAVs.

The developed SLAM system in assessed using the EuRoC dataset. Results show that covisibility-
graph based map culling allows the SLAM system to run in real-time even on a low-resource embedded
computer. The impact of each SLAM task on the overall system performance is analyzed in detail and
the SLAM system is compared with state-of-the-art methods to validate the presented approach.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The recent growing interest in MAV platforms has triggered an
increasing need for localization methods capable of operating on-
board and in real-time. Designing systems that provide accurate
pose estimation in challenging environments while running on
platforms with limited computational resources has therefore
become a key problem in modern mobile robotics.
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(M.A. Nitsche), pire@cifasis-conicet.gov.ar (T. Pire), tfischer@dc.uba.ar
(T. Fischer), pdecris@dc.uba.ar (P. De Cristóforis).

Vision-based approaches seem to be the preferred solution
due to their low power consumption, low weight and good per-
formance in a broad spectrum of environments. However, ac-
curate and consistent vision-based localization algorithms still
require considerable computational power. This becomes an is-
sue when targeting low-payload robots, where only small and
low-resource processing hardware can be employed. Therefore
it becomes interesting to consider new strategies for reducing
computational requirements of vision-based localization methods
to allow meeting real-time constraints.

From a methodological point of view, vision-based localiza-
tion methods can be classified as Visual Odometry (VO) or visual
Simultaneous Localization and Mapping (SLAM) approaches. VO
techniques focus on ego-motion integration to get a camera pose
estimate, while SLAM approaches build a global map against
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which the robot can localize. One of the main drawbacks of
VO approaches is that accumulated pose drift is never corrected
due to the absence of global map information. In contrast, SLAM
approaches are able to localize against the map without the need
of motion integration and are able to correct the pose drift over
long trajectories by performing loop detections and closures.

A widely adopted real-time strategy for Visual SLAM is the
one proposed by PTAM [1] (Parallel Tracking and Mapping) where
the localization and map optimization tasks are decoupled as
separate computing threads. The former, usually referred to as
tracking, is expected to provide real time localization whereas
the latter, further referred to as mapping, aims to keep the map
as consistent and precise as possible, by performing a non-linear
optimization technique called Bundle Adjustment (BA). Most re-
cent feature-based Visual SLAM approaches adopt this strategy
and usually extend it by adding a third thread [2,3] to perform
loop detection and closure.

Nevertheless, tracking, mapping and loop closure tasks rely
on operations which are largely dependent on the number of
landmarks and processed camera frames. Since these numbers
grow potentially unbounded with the size of the explored area,
these tasks would not be able to run in real-time if the whole
map is considered at each step. While a simple approach could
be to restrict the size of the map by discarding old or faraway
information, this restricts the possibility of performing large loop-
closures, thus being tantamount to Visual Odometry.

Therefore, efficient methods to isolate portions of the map
relevant to the current task at hand become necessary. The notion
of covisibility [4] can be used to efficiently select a portion of
the map that is strongly related by mutual observation to one
or more query camera poses. A pair of camera frames are said
to be covisible to the nth degree when they observe at least n
landmarks in common (Fig. 1 illustrates this).

The present work is a follow up research based on proposed
contributions of Nitsche et al. [5]. In this regard, the covisibility-
based map culling strategy, originally employed only during the
tracking process, is extended to all other tasks involved in the
stereo SLAM system. This improvements are incorporated to the
S-PTAM SLAM system [2,6]. The main contributions of this paper
can be summarized as:

• A more extended and detailed description of every con-
current module in the system including a series of par-
allelization insights with proper evaluation of each task
involved.
• An efficient local optimization policy around most recent

map areas, allowed by shared covisibility information com-
puted during the tracking process.
• A fully functioning stereo SLAM system is presented, with

enabled loop closure capabilities and able to run in real-time
on an embedded low-resource processing unit, such as those
found on-board of MAVs.

2. Related work

In terms of on-board vision-based localization, several ap-
proaches either SLAM-based or employing visual-odometry have
been proposed in recent years. Sanfourche et al. [7] propose a
stereo visual odometry suitable for MAVs. The method tracks
features from successive camera frames while establishing 2D-3D
associations with respect to a keyframe-based map. There is no
optimization performed over the map, however pose drift grows
slower compared to frame-to-frame visual odometry. While this
method achieves 20 Hz operation and authors thus claim their
approach is suitable for embedded systems, experiments are per-
formed using a relatively powerful Intel Core 2 Duo computer.

Fig. 1. The figure depicts a small map consisting of a set of polygons repre-
senting camera frames and a set of landmarks represented by dots. Landmark
measurements are represented by black edges, whereas blue edges show the
covisibility degree between frames. Blue dots depict landmarks that are observed
by more than one camera pose, thus contributing to covisibility relations. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Weiss et al. [8] propose an on-board localization method based on
a single camera which employs an inertial-optical flow approach
for speed and IMU bias estimation. As speed integration is prone
to position drift, an optimized version of PTAM is used to produce
a 6 DoF pose estimation. In general, combining visual and inertial
measurements has proven effective for solving localization on
MAVs [9–12]. Burri et al. [13] build upon visual-inertial odom-
etry (VIO) obtaining dense environment reconstruction suitable
for mission planning and exploration. Estimation drift resulting
from the VIO method is corrected by performing relocalization
between local submaps. They obtain 20 Hz operation time using
a tailor made ARM-FPGA system [14].

Bloesch et al. [15] present a robust direct monocular visual-
inertial odometry (ROVIO) framework based on a visual-inertial
EKF-SLAM formulation [16,17]. In this work, multilevel patch
features are directly tracked within the EKF. The new locations
of the multilevel patch features are estimated by considering a
IMU-driven motion model in the prediction step. The subsequent
update step computes intensity errors as visual measurements by
evaluating the discrepancy between the projection of the multi-
level patch into the image frame and the image itself. The direct
use of the error terms within an EKF would make it computation-
ally intractable. In order to tackle this issue, the authors apply a
QR-decomposition on the linear equation system resulting from
stacking all error terms. The proposed approach uses a purely
robocentric representation of the full filter state producing esti-
mates of the current robot pose without maintaining an extensive
map of the environment neither a history of the trajectory poses.
The camera extrinsic parameters as well as the additive IMU
biases are co-estimated. The developed framework can be run
on-board a UAV equipped with an Intel Core i7-2760QM using
a small number of features (equal to 50) at a frame rate of 20 Hz.

Leutenegger et al. [18] propose a novel visual-inertial SLAM
system coined OKVIS. They formulate the problem as one joint
optimization where an IMU measurement error term is consid-
ered along with the usual visual reprojection error within the
minimization cost function. However, OKVIS is not conceived to
work in low-resource hardware platforms and experiments are
performed on a powerful laptop computer. One of the main works
on fully on-board stereo vision for MAV navigation was presented
by Schauwecker et al. [19], where a visual odometry system
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based on PTAM is used to estimate the MAV pose. This work
was extended in [20], where two stereo cameras were used: one
facing forward, used to run a reduced SLAM system, and another
facing downward, used for ground plane detection and track-
ing. Obtained estimations from both camera rigs are then fused
using an EKF. The authors show that using two stereo cameras
significantly increases pose estimation accuracy and robustness.

On the matter of reducing the computational cost of SLAM,
various works focus on efficient ways to deal with large global
maps. Lynen et al. [21] present a framework for tracking the
camera pose of a mobile system relative to a global 3D map. First,
in an offline stage, a map of the environment is reconstructed
from a set of database images by extracting image features that
correspond to 3D landmarks and applying standard Structure-
from-Motion (SfM) techniques. This 3D point cloud is then com-
pressed by removing less important landmarks and quantizing
the 3D point descriptors before being stored on the mobile de-
vice. The system runs a keyframe-based visual inertial EKF-SLAM
method to smoothly track the movement of the camera. For each
keyframe, image features are extracted and their descriptors are
matched against the descriptors of the map. The resulting 2D-3D
matches are then used to robustly estimate the camera pose using
RANSAC.

Lynen et al. [21] uses a covisibility strategy based on [22]
to efficiently localize against the global map by filtering out
landmarks from the model. The idea is to define an undirected,
bipartite visibility graph, where the two sets of nodes correspond
to the database images and the 3D landmarks in the map. A
landmark node and a image node are connected if and only if
the landmark is visible in the corresponding database image.
The landmarks from a given set of 2D-3D matches and their
corresponding database images then form a set of connected
components in this visibility graph. Then, the covisibility filter
removes all matches whose 3D point does not belong to the
largest connected component. These correspondences are then
used to estimate the camera pose.

Strasdat et al. [23] introduces an optimization framework that
distinguishes two different windows of constraints. An inner win-
dow of pose-to-point constraints supported by an outer window
of pose-to-pose constraints. Optimization windows are defined
based on covisibility between keyframes, prioritizing those with
higher degree of covisibility. The authors claim constant time
operation when the maximum number of keyframes considered
for each window is restricted.

Mur-Artal and Juan D. Tardós present a SLAM system called
ORB-SLAM2 [3] that maintains a covisibility graph and a cor-
responding minimum spanning tree. These graphs are used to
retrieve locally connected keyframes, so that tracking and map-
ping tasks operate locally while allowing to work on large en-
vironments and enabling pose-graph optimization of the map
when closing a loop. They achieve average processing time below
camera frame-rate, on an Intel Core i7-4790 desktop computer
with 16 Gb RAM.

Unlike the aforementioned works, in this paper we present
a fully operational stereo SLAM system targeting an on-board
embedded computer without restricting the size of the map,
which allows performing loop detection and closure. As a result
of the proposed covisibility strategy, our system is able to obtain
high localization accuracy while maintaining its ability to operate
in real time without the need of any prior information or model
of the environment.

3. Efficient on-board stereo SLAM

In order to achieve a complete stereo SLAM solution capable
of running in real-time on low-resource hardware platforms,

it is crucial to identify the most computationally demanding
operations. Fig. 2 outlines modules involved, along with their
most common procedures, of a typical feature-based visual SLAM
system which localizes the camera and maintains a global sparse
reconstruction of the environment.

The Tracking module is in charge of determining map to
camera-frame poses minimizing re-projection errors determined
by map point to image-feature matches. Since this optimiza-
tion requires an initial solution, it is usual to predict camera
motion from previous poses and/or using additional propriocep-
tive sensors (e.g. IMU, wheel encoders, etc.). With this predicted
pose, map-to-frame matches need to be established. To do so,
map points are projected to the camera frame and then, by
nearest-neighbor search in image-descriptor space, matches are
obtained. These matches become observations under the opti-
mization framework, representing a set of constraints. Finally,
these constraints are optimized refining the predicted camera
pose, typically using Gauss–Newton or Levenberg–Marquardt al-
gorithms. Once the current pose is estimated, a frame could be
selected to be a keyframe if the Tracking module determines that
it is about to lose track of the map. This decision involves a policy
based on how many map points are successfully tracked between
frames: keyframes should be created if the camera does a rapid
change of orientation towards an unexplored area. Unmatched
image features from the stereo frame are then triangulated and
the map is expanded with new 3D points and a keyframe pose.

In a separated thread, the Local Mapping module continuously
refines the map by means of minimizing the re-projection error
between map points and observing keyframes. In contrast to the
Tracking module, where only the most recent camera pose is
optimized, in this case various keyframes are jointly optimized.
However, considering the whole map during this process is not
feasible for real-time applications. To face this problem, most suc-
cessful approaches defines an area that will be actively adjusted,
supported by an outer area that contributes fixed constraints [1,
3,6]. Another approach is to optimize relative transformations
between keyframes while marginalizing map points [24]. Oth-
ers authors propose to use both point-to-pose and pose-to-pose
constraints [23].

After a local area has been selected and optimized, a search
for new map points observations is performed. Map points are
matched against image features of recently adjusted keyframes,
and in this way, map connectivity is improved. The process could
also reveal outlier map points that show large re-projection errors
on several keyframes. These points are flagged as badly estimated
and removed from the map.

The third module found in most SLAM systems is the Loop
Closing module. As the explored environment grows, visual SLAM
systems tend to accumulate error on localization, keyframe poses
and map point estimates. Even when the Tracking module is able
to find enough map-to-frame matches and estimate an optimized
pose of the current camera frame, the map could become globally
inaccurate and lose fidelity with the real environment. Given the
absence of global external information (GPS-denied scenarios) a
successful approach is to recognize places that have been visited
more than once (trajectory loops). This is a very valuable infor-
mation that allows to measure the accumulated drift up to that
moment and apply corrections to produce a globally consistent
map model.

Most successful methods of place recognition on visual SLAM
seek to classify appearance of keyframe images and evaluates
similarities among them to establish possible loop candidates [25,
26]. An appearance keyframe database is incrementally built al-
lowing to quickly evaluate if two given keyframe images be-
long to the same place. After a loop candidate between two
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Fig. 2. Stereo visual SLAM overview.

keyframes has been established, an exhaustive geometric veri-
fication is employed to compute a better estimate of the rela-
tive transformation between those keyframes. Map points related
with both keyframes are cross-projected and matched against
the corresponding image features and the relative transformation
is calculated using Perspective-n-Points [27] methods, usually
under a RANSAC [28] model checking scheme.

In following sections we delve into each module proposing
several covisibility-based techniques that allow to leverage a fully
operational SLAM system including loop detection and closure
on resource-constrained hardware, without limiting the global
map size. A series of synchronization insights and considerations
between modules are also presented.

3.1. Map structure and concurrency requirements

The map is composed of two main elements, map points and
keyframes. These are related by two different graphs, a visibility
bipartite graph between points and keyframes and a covisibility
graph only between keyframes. The visibility graph models ob-
servation dependencies, where edges describe measurements be-
tween keyframe camera poses and tracked map points of the en-
vironment. The covisibility graph relates keyframes which share
at least one observed map point, and edges store the degree
of covisibility (total amount of shared map points). Using the
covisibility information every module will continuously declare
which is its active working area. This map segmentation allows to
maximize concurrency on the map as modules will adjust to work
efficiently over non-conflicting areas of the map. Fig. 3 exhibits a
possible situation where three common operations are happening
at the same time on the map. In this example, the Tracking
module is performing current camera-pose estimation while the

Local Mapping module is performing local optimizations. At the
same time, the Loop Closing module is correcting older keyframes
that are not being actively used by any other module. These
operations will be further explained on following Sections 3.2.1,
3.3.1 and 3.4.1.

Maintaining which areas are being actively used at all times
allows for specific tailoring of algorithms involved on each mod-
ule, but access to individual map elements could still be required
by several execution threads at the same time. Tracking requires
frequent read access to keyframes and map points for local map
definition and feature-to-point matching. A frame is declared
keyframe when the number of tracked points is less than 90% of
the points tracked in the last added keyframe. When a frame is
selected as a keyframe, its unmatched features are triangulated
and added to the map as new points. Only in this case the tracking
thread requires write access to maintain consistency of visibility
and covisibility graphs. On the other hand, the mapping thread
optimizes the map constantly. It requires both read and write
access to keyframes and map points. It is also responsible for find-
ing new matches between points and image features, updating
the relations graphs with the new measurements. Finally, a loop
closing thread tries to detect loops upon new keyframe creation
and, when detected, performs global pose-graph optimization.
This involves write-access to all keyframes and map points.

In order to satisfy the aforementioned requirements while
maximizing parallelism, every map element stores its visibil-
ity relations and, instead of locking the whole map, points and
keyframes can be individually locked allowing efficient informa-
tion access.
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Fig. 3. Map segmentation example on a situation where different areas are being
actively used for different purposes.

3.2. Tracking module

The most computationally demanding operations carried by
the Tracking module are: feature detection and descriptor ex-
traction, point-to-feature matching, local map building and pose
optimization.

Regarding feature extraction, a robust and fast solution is to
used a fixed-size grid as performed by ORB-SLAM2 [3]. Then,
features are detected over each cell. If not enough features are
found in one cell, a lower feature response threshold is used. This
process allows to obtain features throughout the whole image.
However, this step results in a large number of features and
filtering is required. To do so, we recursively divide the image
area using a quad-tree, assigning features to each cell accordingly.
When a maximum number of 200 cells is reached, the feature
with the strongest response of each cell is returned. In this way,
it is possible to limit how many features are used for tracking
and have an homogeneous distribution of feature in the image.
To better exploit hardware parallelism, feature extraction (detec-
tion and description) and point-to-feature matching can be done
concurrently among both images of the stereo pair.

While matching, in principle all map points need to be pro-
jected to the camera frame, which scales linearly with the size of
the map. Also, this process is wasteful since many points could be
actually invisible due to occlusions. When dealing with resource-
constrained computing platforms, including all map points to the
local map needed for tracking may incur in excessive computa-
tional cost. Additionally, the size of this map can grow unbounded
as the explored area increases, which represents an undesirable
situation in terms of real-time applications. For this reason, in
these cases it is desirable to limit this local map. The approach
followed in this work is to use covisibility information in order to
find map points seen by keyframes which share observations to
the current camera frame. In other words, it is possible to build a
local map of points which are highly likely to be currently visible.

Covisibility information is built empirically during tracking
from successful matches: whenever a point is matched to an
image-feature in a given camera frame, this point is defined as

visible from said frame. This information can thus be represented
as a graph between keyframes where each edge has a weight
corresponding to the covisibility degree, i.e. the number of shared
observations.

However, a difficulty arises here since information built in this
manner (via detected matches) cannot be guaranteed to match
actual covisibility as would be obtained if the complete map was
known beforehand. Thus, using covisibility information to build
the local map may not necessarily retrieve the full set of points
that could be observed by the current frame. For this reason, some
works [3] propose to use not only directly covisible keyframes but
also a second level of keyframes covisible to the first. While this
increases the possibility of including points that should have been
marked as directly covisible, it comes at the expense of a larger
local map and thus higher tracking cost.

Besides building the covisibility relational graph, the Tracking
module is also in charge of updating a pose-chain graph. This
graph is actually a sub-graph of the covisibility graph that con-
nects every keyframe with its most covisible one. To iteratively
construct this pose-chain graph, the tracking maintains a refer-
ence to the most covisible keyframe with respect to the current
camera frame. When a new keyframe is created, the Tracking
module connects the reference keyframe with it and the recently
created one is declared as the new reference.

In the following section a simpler and more effective strat-
egy for covisibility based local map building is presented, which
allows to reach a bounded computational cost of the tracking
task. Furthermore, it allows to better balance efficiency and the
tracking accuracy.

3.2.1. Local tracking map building
The proposed strategy for local map building is outlined in

algorithm 1. This strategy presents a way to obtain the set of
points ML defining the local map, based on the previous set of
successfully tracked points MT (i.e. matched to image-features).
First, a reference keyframe Kr is defined as the keyframe that
observes most points in MT . Second, the set of N most covisible
keyframes to Kr is found and sorted, which is called Kcov . Third,
up to M points observed from keyframes of Kcov are incorporated
into ML. Low covisibility keyframes of Kcov can be ignored using
a minimum threshold Cmin. Fig. 4 shows the selection process of
map points to be considered in the local map.

Once the local map ML is built, contained points are projected
to the current image and used for point-to-feature matching. The
set of successfully matched points will define the set MT used for
the next iteration. In this way, MT will always be a subset of ML.

It is important to note that only the first N keyframes with
highest covisibility degree with Kr are considered. And only up
to M points observed by these keyframes are added to ML. As a
result of applying this local-map building strategy, ML is bounded
by M . Thus, the cost of subsequent matching and minimization
operations are also bounded by M .

The cost of building this local map scales linearly w.r.t. the
number of keyframes covisible to Kr . This is due to the fact
that this term dominates the number of observing keyframes of
a given point in MT . Both MT and Kcov are bounded by M (in
previous iteration) and N , respectively.

It should also be noted that ML is first initialized using MT ,
since using the aforementioned limits does not guarantee that all
points in MT will be in the result. This is particularly relevant
when tracking is bad and MT is small, which would result in a
too small ML.
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Fig. 4. (a) Map points tracked by the previous frame (MT ). (b) Selection of the reference keyframe Kr , this is, the keyframe that observe the major amount of map
points in the MT set. Extension of the MT with the map points observed by the most covisible keyframes of Kr . The number depicted in the keyframes, reflects the
order in which the map points are included to the local map.

Algorithm 1: Local Map building strategy
Input: MT tracked map
Output: ML local map, Kr reference keyframe,

Kcov most covisible keyframes to Kr
/* initialize with previous tracked map */
ML ← MT
/* find Kr which observes most points in MT */
foreach p in MT do

foreach Ki : observingKeyframes(p) do
count(Ki)← count(Ki) + 1

Kr ← argmaxKicount(Ki)
/* get N most covisible keyframes to Kr */
Kcov ← sort_n(covisible(Kr ), N)
/* add up to M pts observed by KFs in Kcov to ML */
foreach Ki in Kcov do

if count(Ki) < Cmin then
continue

ML ← ML∪ observedPoints(Ki)
if #ML > M then

break

3.3. Local mapping module

Adjusting keyframe poses and map point position through
minimization of local re-projection errors is a very demanding
task that highly depends on the amount of keyframes and map
points selected. A precise keyframe selection policy must be
decided for resource-constrained hardware. Before determining
that policy, it is worth defining what is the main objective of this
local optimization.

The Local Mapping module will be in charge of enhancing local
consistency of areas being actively used by the tracking. Instead
of working as a sliding window through the entire map, it will
prioritize areas in close vicinity with the current camera pose. In
this way, every task performed will have immediate impact on
localization.

As the tracking relies on pose estimation methods that mini-
mize re-projection errors, we work with the optimization policy
described in [2] which defines an area that will be actively ad-
justed supported by an outer area that adds fixed constraints.
Only pose-to-points constraints will be included in the opti-
mization as adding pose-to-pose constraints will increase the
computational cost. On the other hand, using only pose-to-pose
constraints could result in a less demanding approach, but would
not ensure better re-projection errors on the tracking task.

In the following section a covisibility-based strategy is pre-
sented to select the keyframes to be included in the optimization.

3.3.1. Local optimization map building
For the selection of keyframes to be used in the optimization,

the mapping thread exploits information already computed dur-
ing tracking. The current reference keyframe Kr is retrieved, along
with the ordered set of the most covisible keyframes Kcov . Kr
and a predefined number of keyframes from Kcov are selected to
construct the set of keyframes that will get actively adjusted. The
selection is carried in such way that those with highest degree
of covisibility are chosen first to be actively adjusted. Remaining
keyframes are then used to define the set of fixed keyframes. The
amount of fixed keyframes is also predefined and if there is not
enough keyframes in Kcov to satisfy it, a search is carried among
covisible keyframes to those already selected for adjusting. As
before, the selection is done by degree of covisibility.

As a result of this strategy, keyframes and map points in close
vicinity of the current camera pose are prioritized for optimiza-
tion. This allows improvements to be quickly available, enhancing
the local consistency around the map area being tracked. When
moving around already mapped areas where new keyframes are
not required to be created at high rates there could be some
spare time for optimization of older keyframes. In this case, the
mapping task keeps track of not yet optimized keyframes and
adjusts them in FIFO order.

3.4. Loop closing module

Once a loop is found and validated, a newly estimated trans-
formation between keyframes is included into the pose-graph.
This could generate a spatial inconsistency as the relative trans-
formation may not conform with the global keyframe poses in
the map. To deal with this, a correction is propagated through
the entire map, relaxing all transformations between keyframes
using a pose-graph optimization. It is paramount that the correc-
tion takes into account all map points and maintain consistency
with already established keyframe-to-point observations. As a
result, the map improves its fidelity with respect to the real
environment.

In terms of computational cost, while very efficient appear-
ance classification algorithms and loop detection methods exist,
loop correction and map update are very time consuming pro-
cesses that are not easily tackled as they require to work over
the entire map.

Following an efficient covisibility-based strategy is presented
for loop correction (see Fig. 2), which impacts on both the pose-
graph optimization and map update performance. We build upon
the loop closure method described in [2] adding a policy that
divides map keyframes in several windows allowing to maximize
concurrency of the system and to reduce the time during which
the Tracking and Local Mapping modules must be paused.
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3.4.1. Covisibility-based map segmentation
Introducing strong changes to the map may harm the perfor-

mance of other system modules. As the goal of the system is to
maintain proper localization, the Tracking module must remain
operational in real-time at all times, being able to access map
points as needed and to create new keyframes if required. It is
also desirable that the Local Mapping module is able to perform
local optimizations over keyframes and map points to enhance
local consistency of an area nearby to the current camera pose. To
ensure all this while correcting the map, the Loop Closure module
divides the map in several windows. The main objective is to
allow operation of both Tracking and Local Mapping in a defined
map area while loop-closure optimizations and corrections over
map areas that are not being used happen concurrently.

After a loop has been detected and validated, a safe track-
ing and mapping window is defined with the current tracking
reference keyframe Kr and all its covisibles keyframes. No loop
correction to keyframes nor map points will be introduced within
this area. The Local Mapping module is also notified, so it can
ensure that it will not perform optimization outside the safe
window.

Loop correction and optimization are performed in this work
as described in [2] over an internal copy of the entire pose-chain
of keyframes. An initial correction is computed by propagating a
relative transformation through keyframes applying a linear pose
interpolation. Thereafter, a pose-chain optimization is carried to
get a more accurate solution. After the optimization, each map
point is corrected by applying the same transformation that was
applied to the keyframe that originally triangulated it.

Fig. 5 characterizes a possible situation where a recently cre-
ated keyframe Kt gets related with a loop keyframe Kℓ by a
relative transformation Ttl which denotes the pose of Kℓ w.r.t. Kt
coordinate system. Map is then divided into three windows: the
safe tracking and mapping window, the safe loop closing window
and the out of loop closure window. Keyframes on the safe
tracking and mapping window are not necessarily time related
as they are selected by covisibility. Loop closing window is then
defined as the remaining keyframes that were captured by the
internal pose-chain copy. Finally, the out of loop closure window
includes keyframes that were created after the internal copy has
been made.

The Tracking module is allowed to create new keyframes and
map points during the loop closure and optimization process, and
thus, there could be some keyframes that will not be considered
on the pose optimization. In this regard, these keyframes are
added to the out of loop closure window and a special update
policy is applied.

After an optimized correction has been computed for all the
considered keyframes, the map update process follows in three
stages:

1. Update corrected keyframes and map points of the safe
loop closing window.

2. Update corrected keyframes and map points inside the safe
tracking and mapping window, applying any modification
that may have been introduced by the local mapping since
the start of the loop closing process.

3. Update corrected keyframes and map points of the out of
loop closure window.

The first update stage is performed right after the pose-
chain optimization without any synchronization between mod-
ules. Only during the second and third stage, Tracking and Local
Mapping modules must be paused, where only a small fraction of
the map is updated.

Keyframe states inside the safe mapping window are stored
at the process beginning, as they are necessary for bookkeeping

changes introduced by the Local Mapping module while the loop
is being corrected. These changes are then re-applied before
updating the safe window. Keyframes in the out of loop closure
window are corrected using the same rigid transformation ap-
plied to the nearest keyframe on the pose-chain that has been
included on the loop optimization.

3.5. Inter-modules synchronization and information sharing

After the Tracking module builds his local map, the reference
keyframe Kr and Kcov set are stored and kept available for sharing
with the Local Mapping as they represent valuable information
that will be used to define an efficient optimization policy (dis-
cussed in Section 3.3.1). Apart from the reference keyframe, the
Tracking module does not make use of pose information of other
keyframes as these are only used to retrieve a set of surrounding
map points to be used as map-to-frame matching candidates
and pose estimation. Furthermore, map points are maintained in
global coordinates. As a result, changes on keyframes from Local
Mapping and Loop Closing optimization tasks do not invalidate
map points information, and hence, further synchronization is not
required regarding map points during tracking tasks. However,
during map-to-frame matching a reasonable prediction of the
current camera pose is necessary. The reference keyframe pose
serves as an origin from which to construct the prediction inte-
grating last camera pose with estimated instantaneous velocities
(e.g. from wheel odometry or a decaying velocity model).

A loop correction may change the reference keyframe pose
drastically, therefore, the Loop Closing module must pause all
tracking and mapping operation while updating the map area
that contains it (see Section 3.4.1) and ensure that the most up-
dated state is always used. In cases where the camera is moving
quickly during the loop closure process, or changes its orientation
towards unexplored areas, the safe tracking window could not be
sufficient to enclose the required area to be tracked. This situation
could produce that the Tracking module creates new keyframes
over already mapped areas leading to duplicated map points. This
is acceptable and can be dealt with a guided search and fusion for
duplicated points after loop correction.

4. Evaluation

In order to verify the proposed constrained-covisibility strate-
gies in this work, we build upon the stereo visual SLAM system
called S-PTAM [2], which has proven to be stable, accurate and
suitable for large scale operation.

We analyze the resulting system in terms of performance im-
provement, particularly when running on low-resource hardware,
and of its impact in localization precision. Since the purpose of
this work is to ultimately enable on-board and real-time exe-
cution of a stereo SLAM system for localization of MAVs, we
test the modified S-PTAM system running on board an Odroid
XU4 computer with four Cortex-A15 cores running at 2 GHz
and four Cortex-A7 cores running at 1.4 GHz. For establishing a
precision baseline without hardware constraints, we also evaluate
performance on an Intel Core i7-7700.

The presented system is agnostic regarding to the image fea-
ture extraction method used. For reasons of efficiency and robust-
ness, we use FAST [29] for feature detection and BRIEF [30] for
keypoint description.

For a realistic and repeatable experimentation we used the
EuRoC MAV dataset [31], as it delivers accurate ground-truth
position estimates using a Leica MS50 laser that tracks a prism
mounted on top of the MAV. Since EuRoC presents a challeng-
ing scenario with rapid camera motion and S-PTAM requires a
camera pose prediction to allow for features-to-map matching,
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Fig. 5. A map segmentation scenario while performing loop closure. Orange dashed lines represents big map areas that are not actively used by Tracking nor Local
Mapping modules. Blue dots represents map points retrieved by the tracking local map building. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

instead of employing a simple decay velocity model we choose to
employ instantaneous velocity estimated from the IMU data. For
this purpose, we use the MSF sensor fusion framework [32] that
takes as input the IMU measurements and the current camera
pose estimated by S-PTAM; and produces the camera velocity.
The resulting velocity is integrated to obtain an initial guess for
the camera pose in the following frame. We notice that, after the
features-to-map matching, the initial guess is not used as a prior
in the pose optimization. Furthermore, to measure camera pose
estimation precision, we use the pose estimated by S-PTAM and
not the fused pose produced by MSF. In other words, MSF is only
used to aid in features-to-map tracking.

When running S-PTAM on the Odroid XU4 we replay the
EuRoC dataset from a desktop computer and feed data through an
Ethernet connection to the Odroid, so as to remove any impact of
I/O in the performance of the embedded system. We only run MH
sequences since V sequences present motion which is too fast for
Odroid to follow.

4.1. Evaluation of constrained-covisibility strategies

In this section we present the results obtained from the pro-
posed covisibility-based strategies employed for the Tracking and
Local Mapping modules. As a reference, we also run the modified
S-PTAM on a powerful desktop computer and compare the ob-
tained results and that of ORB-SLAM2 [3]. Since for these tests
we are not performing loop closure on S-PTAM, for fairness we
disable this feature in ORB-SLAM2 as well. For all experiments,
200 FAST+BRIEF features are extracted and local optimization
selects 6 keyframes for the active window and 20 keyframes for
the fixed window.

Fig. 6 shows execution times for the tracking task of S-PTAM
when using our proposed local map building strategies and that
of ORB-SLAM2 (with author’s parameters for this dataset), for
different values of M (maximum size of local tracking map).
We also show the computationally most demanding steps of the
tracking task in S-PTAM. Note that we do not present execution
of ORB-SLAM2 on-board the Odroid XU4 computer since tracking
was quickly lost due to high processing time demanded for each
frame.

In Fig. 7 we present the relative translation and rotation errors
of S-PTAM with different values of M , when running on each
platform. Moreover, we also measure the ORB-SLAM2 tracking
accuracy for reference. It should be noted that since we are
interested in using the SLAM system as a real-time localization
source for autonomous navigation of MAVs, what is of importance
when measuring precision is the error arising from camera pose
reported after each tracking iteration, instead of the one obtained
after local or even global bundle-adjustment. This is an important
difference with respect to other works where the error is mea-
sured only after the complete dataset is replayed. For this reason,
we run ORB-SLAM2 against EuRoC dataset while measuring local-
ization error in the same way, using instantaneous camera pose
information.

When analyzing the results, a series of considerations can be
made. First, it can be seen that the total tracking time (Fig. 6a)
of S-PTAM is much smaller than ORB-SLAM2, around 4× to 6×
faster. Also, the performance of S-PTAM on the Odroid XU4 is
around and order of magnitude lower that on the Core i7. In any
case, Odroid XU4 manages to track the camera at around 9 to
12 Hz in general, which is close to camera frame-rate. On the
other hand, on Core i7, tracking rate is around 66 Hz, which is
considerable higher than camera frame-rate. Second, it is possible
to observe the effect of the proposed local map building strategy,
where limiting the size of this map reduces computational cost.

In order to better understand the performance improvement
obtained by the use of the proposed local map building strategy,
we also show the mean execution time of the main steps of the
tracking task (Fig. 6b). It can be seen that in all cases, the most
demanding step corresponds to feature extraction (detection and
description). The second most demanding step corresponds to the
point to feature matching. Here it can be seen that loweringM has
a positive impact on performance. Finally, as expected the cost of
the local map building step itself is also lessened when less points
are included in the output. On the other hand, lowering M has a
slight negative impact on the keyframe creation step. This can be
explained since a smaller local map implies that there is a higher
chance of adding points which were not successfully matched.

In terms of tracking precision, in Fig. 7 it can be seen that,
in general, reducing the number of points in the local map does



200 G. Castro, M.A. Nitsche, T. Pire et al. / Robotics and Autonomous Systems 116 (2019) 192–205

Fig. 6. Mean execution times for different values of the local map size (M), for both processing platforms, over all MH sequences of EuRoC dataset.

Fig. 7. Impact of different local map sizes on precision: RMSE values for relative translation and rotation errors, for each MH sequence of the EuRoC dataset, for
both processing platforms. Corresponding error values for ORB-SLAM2 are included.

not entail a significant impact on translation or rotation relative
errors. Moreover, a difference can be observed between execution
on Odroid XU4 and the Core i7 computers. This can be explained
since on Odroid XU4 there is approximately a 50% frame-loss.
Finally, when comparing to ORB-SLAM2 running on the Core

i7, it can be seen that the localization performance of the S-

PTAM system is quite similar. On the other hand, due to the high

computational cost of ORB-SLAM2, measuring the localization

precision running on Odroid XU4 was not possible.
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Fig. 8. Translation errors for several segment lengths using odometry metric proposed in [33].

4.2. Evaluation of odometry accuracy on intel core i7

Following we evaluate the accuracy of S-PTAM against ORB-
SLAM2 and the state-of-the-art visual-inertial odometry system
ROVIO [15] on the Intel Core i7 platform. As ROVIO is a monocular
system without loop closure capabilities, we disable Loop Closing
modules in S-PTAM and ORB-SLAM2 for all evaluations. More-
over, the EuRoC MH sequences are processed when MAV start

exploring. S-PTAM parameter M (maximum size of local tracking
map) has been set to 250 points, based on the results obtained in
the previous Section 4.1.

Fig. 8 exhibits translation error on each sequence using the
metric proposed in [33]. We compute the errors using the evo
evaluation framework.1 The accuracy of an algorithm is evaluated

1 https://github.com/MichaelGrupp/evo.

https://github.com/MichaelGrupp/evo
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Fig. 9. Frame-to-frame relative errors of all EuRoC MH sequences.

by aligning each estimated pose with its corresponding ground-
truth pose and then measuring error on estimating a determined
distance along the trajectory. It can be observed that S-PTAM and
ORB-SLAM2 outperforms ROVIO where its errors grow with the
length of the estimated trajectory segment. The ability to relate
map points across the map from different keyframes perspectives
allows S-PTAM to produce consistent estimates within larger
areas.

Fig. 9 shows competent relative translation and rotation es-
timates of S-PTAM, although, ROVIO outperforms S-PTAM at es-
timating relative frame-to-frame motion. While ROVIO does not
maintain an extensive map of the environment, it is able to fuse
IMU measurements actively obtaining precise relative estimates.
These results expose the impact of being able to work with a
rich map of the environment. S-PTAM and ORB-SLAM2 sacrifice
frame-to-frame motion estimation accuracy in favor of a greater
global consistency effectively bounding the estimation drift in
long term operation.

4.3. Evaluation of global localization accuracy on odroid XU4

In order to evaluate the global consistency achieved by our
system, we present results where the Loop Closing module is
activated on the Odroid XU4 platform. Evaluation is performed
only against ROVIO since ORB-SLAM2 is not able to work in such
limited hardware.

Fig. 10 presents absolute translation and rotation errors com-
paring estimated trajectory poses against the ground-truth re-
ported poses. The system is able to maintain consistent global

Table 1
Absolute translation errors (RMSE) for all sequences. Errors have been computed
after trajectories where aligned with the ground-truth as proposed in [34]. Loop
Closing module has been activated for S-PTAM while running on the Odroid
XU4. The top performing method on each platform and dataset sequence is
highlighted in bold.

Intel Core i7 Odroid XU4

S-PTAM ORB-SLAM2 ROVIO S-PTAM+LC ROVIO

MH01 0.054 0.023 0.243 0.089 0.337
MH02 0.063 0.024 0.386 0.071 0.393
MH03 0.155 0.027 0.260 0.254 0.511
MH04 0.188 0.260 0.763 0.292 0.938
MH05 0.091 0.166 0.486 0.446 0.822

Fig. 10. Absolute translation and rotation estimation errors of all EuRoC MH
sequences.

localization within 2 meters of translation error and 6.4 degrees
of rotation error on all sequences. ROVIO presents higher absolute
translation errors on almost all sequences except on MH02 where
it gets better estimates at the beginning of the sequence where
rapid motion is present.

Table 1 shows absolute translation errors (RMSE) over tra-
jectories aligned with ground-truth according to the proposed
metric in [34]. Scale alignment is applied to ROVIO estimates
so that they match ground-truth scale using [35]. ORB-SLAM2
outperforms S-PTAM on sequences MH01, MH02, MH03 on the
Intel Core i7 but S-PTAM is able to run with Loop Closing activated
on the Odroid XU4 presenting competent results that supersede
ROVIOS’s.
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Fig. 11. S-PTAM and ROVIO estimated trajectories over EuRoC sequences MH01
and MH02 running on Odroid XU4.

Figs. 11–13 exhibits estimated trajectories obtained over all
sequences. It can be observe that ROVIO presents higher accu-
mulated drift specially on sequences MH04 and MH05 where
estimated trajectory ends several meters away from the ground-
truth.

Table 2 exhibits the amount of loops effectively closed on each
EuRoC sequence with the processing time required for the map
update process. Measured times are divided by map keyframe
windows described in Section 3.4.1. Requiring to pause the track-
ing task only during the safe tracking and mapping window
update, by an average of around 50 ms.

5. Conclusions

This work presents covisibility-based point-selection policies
in the context of an optimization-based SLAM. This map selec-
tion strategy, originally used only during the tracking module,
is extended for loop correction, optimization and map update
allowing to include a loop closure module. As a result, the compu-
tational cost of the overall SLAM system is reduced, but especially
the one of the tracking task, which can be bounded as desired.

Fig. 12. S-PTAM and ROVIO estimated trajectories over EuRoC sequences MH03
and MH04 running on Odroid XU4.

Fig. 13. S-PTAM and ROVIO estimated trajectories over EuRoC sequence MH05
running on Odroid XU4.

This allows to reach an on-board and real-time execution on
resource-constrained platforms, such as those present on MAVs.
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Table 2
Performance of loop closing map update tasks on each EuRoC MH sequences
running on the Odroid XU4.
Seq. #Closures Update stage Min. (ms) Avg. (ms) Max. (ms)

MH01 4 Loop closing window 103.7 159.37 220.5
Tracking window 9.8 47.35 72.4

MH02 2 Loop closing window 14.7 76.35 138.0
Tracking window 33.0 43.65 54.3

MH03 3 Loop closing window 89.7 158.2 246.2
Tracking window 21.1 28.5 33.4

MH04 1 Loop closing window 136.1 136.1 136.1
Tracking window 18.2 18.2 18.2

MH05 6 Loop closing window 133.8 161.1 202.9
Tracking window 4.9 33.3 85.4

In order to prove the feasibility of the proposed approach, we
implemented it on the state-of-the-art S-PTAM system and per-
formed a series of experiments on the challenging EuRoC dataset.
We also ran the ORB-SLAM2 and ROVIO systems to establish a
comparison for performance and accuracy.

Results show the reduction of computational time of the track-
ing task, which is of significant importance for on-board execu-
tion of the system on MAVs. Moreover, it can be seen how the S-
PTAM system manages to track the camera pose at rates exceed-
ing most standard cameras when running on a more powerful
computer.

Finally, regarding execution on a resource-constrained plat-
form, although the performance is much lower, the results evince
that it is still possible to track the camera with rapid and chal-
lenging motions while even detecting and closing loops, making
sense of maintaining a global map.
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